Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Behav ; 14(6): e3594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849980

RESUMO

INTRODUCTION: In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants. METHODS: Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed. Given substantial heterogeneity in both etiology and outcomes in ASD, we utilized both group-level and subject-level analysis approaches to test for signs of atypical intracortical MC as estimated by T1w/T2w ratio. RESULTS: Group-level analyses showed no significant differences in average T1w/T2w ratio or its associations with age between groups, but revealed significant positive main effects of age bilaterally, with T1w/T2w ratio increasing with age across much of the cortex. In subject-level analyses, participants were classified into subgroups based on presence or absence of clusters of aberrant T1w/T2w ratio, and lower neuropsychological function was observed in the ASD subgroup with atypically high T1w/T2w ratio in spatially heterogeneous cortical regions. These differences were observed across several neuropsychological domains, including overall intellectual functioning, processing speed, and aspects of executive function. CONCLUSIONS: The group-level and subject-level approaches employed here demonstrate the value of examining inter-individual variability and provide important preliminary insights into relationships between brain structure and cognition in the second half of the lifespan in ASD, suggesting shared factors contributing to atypical intracortical myelin content and poorer cognitive outcomes for a subset of middle aged to older autistic adults. These atypicalities likely reflect diverse histories of neurodevelopmental deficits, and possible compensatory changes, compounded by processes of aging, and may serve as useful markers of vulnerability to further cognitive decline in older adults with ASD.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Bainha de Mielina , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Testes Neuropsicológicos , Envelhecimento/fisiologia , Envelhecimento/patologia
2.
Angiology ; 75(3): 249-266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36606749

RESUMO

It is uncertain whether monitoring or targeting anti-Xa levels is necessary when using low-molecular-weight-heparin (LMWH) to prevent venous thromboembolism (VTE). This stratified meta-analysis assessed whether monitoring trough or peak anti-Xa levels with LMWH dosing would reduce risk of VTE. Twelve non-randomized studies involving 3604 hospitalized patients met the inclusion criteria and were subject to meta-analysis. Eight studies assessed the association between VTE and peak anti-Xa levels (between .2 and .5 IU/ml) and four studies assessed the benefits of targeting the trough anti-Xa levels (>.1 IU/ml). Achieving an adequate peak or trough anti-Xa level was associated with a reduced risk of VTE (random-effects model odds ratio [OR] .52, 95% confidence interval [CI] .34-.77; P = .001, I2 = 30% and P-value for heterogeneity = .171) compared with using a fixed standard dose of LMWH. Targeting the trough level (OR .40, 95%CI 0.22-.75, P = .004) appeared to be more effective than targeting the peak level (OR .62, 95%CI 0.37-1.03, P = .066), although a formal interaction analysis did not confirm they were statistically different (ratio of ORs = 1.52, 95%CI 0.68-3.40; z score = 1.03, P = .306). Targeting a higher anti-Xa level did not appear to increase the risk of bleeding or transfusion (OR 1.20, 95%CI 0.46-3.17, P = .707).


Assuntos
Heparina de Baixo Peso Molecular , Tromboembolia Venosa , Humanos , Heparina de Baixo Peso Molecular/uso terapêutico , Anticoagulantes/efeitos adversos , Tromboembolia Venosa/prevenção & controle , Tromboembolia Venosa/tratamento farmacológico , Hemorragia/induzido quimicamente
3.
Cortex ; 153: 110-125, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640320

RESUMO

Individuals with autism spectrum disorder (ASD) frequently present with impairments in motor skills (e.g., limb coordination, handwriting and balance), which are observed across the lifespan but remain largely untreated. Many adults with ASD may thus experience adverse motor outcomes in aging, when physical decline naturally occurs. The 'hand knob' of the sensorimotor cortex is an area that is critical for motor control of the fingers and hands. However, this region has received little attention in ASD research, especially in adults after midlife. The hand knob area of the precentral (PrChand) and postcentral (PoChand) gyri was semi-manually delineated in 49 right-handed adults (25 ASD, 24 typical comparison [TC] participants, aged 41-70 years). Using multimodal (T1-weighted, diffusion-weighted, and resting-state functional) MRI, we examined the morphology, ipsilateral connectivity and laterality of these regions. We also explored correlations between hand knob measures with motor skills and autism symptoms, and between structural and functional connectivity measures. Bayesian analyses indicated moderate evidence of group effects with greater right PrChand volume and reduced leftward laterality of PrChand and PoChand volume in the ASD relative to TC group. Furthermore, the right PoC-PrChand u-fibers showed increased mean diffusivity in the ASD group. In the ASD group, right u-fiber volume positively correlated with corresponding functional connectivity but did not survive multiple comparisons correction. Correlations of hand knob measures and behavior were observed in the ASD group but did not survive multiple comparisons correction. Our findings suggest that morphological laterality and u-fiber connectivity of the sensorimotor network, putatively involved in hand motor/premotor function, may be diminished in middle-aged adults with ASD, perhaps rendering them more vulnerable to motor decline in old age. The altered morphology may relate to atypical functional motor asymmetries found in ASD earlier in life, possibly reflecting altered functional asymmetries over time.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Substância Branca , Adulto , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
4.
Brain Connect ; 12(3): 234-245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34102876

RESUMO

Background/Introduction: Autism spectrum disorder (ASD) is characterized by atypical functional connectivity (FC) within and between distributed brain networks. However, FC findings have often been inconsistent, possibly due to a focus on static FC rather than brain dynamics. Lagged connectivity analyses aim at evaluating temporal latency, and presumably neural propagation, between regions. This approach may, therefore, reveal a more detailed picture of network organization in ASD than traditional FC methods. Methods: The current study evaluated whole-brain lag patterns in adolescents with ASD (n = 28) and their typically developing peers (n = 22). Functional magnetic resonance imaging data were collected during rest and during a lexico-semantic decision task. Optimal lag was calculated for each pair of regions of interest by using cross-covariance, and mean latency projections were calculated for each region. Results: Latency projections did not regionally differ between groups, with the same regions emerging among the "earliest" and "latest." Although many of the longest absolute latencies were preserved across resting-state and task conditions, lag patterns overall were affected by condition, as many regions shifted toward zero-lag during task performance. Lag structure was also strongly associated with literature-derived estimates of arterial transit time. Discussion: Results suggest that lag patterns are broadly typical in ASD but undergo changes during task performance. Moreover, lag patterns appear to reflect a combination of neural and vascular sources, which should be carefully considered when interpreting lagged FC. Impact statement Altered brain dynamics have been proposed in autism spectrum disorder (ASD). Lagged functional connectivity analysis uses cross-correlation between functional magnetic resonance imaging (fMRI) time series to determine regional latency. Few studies have examined blood oxygen level-dependent (BOLD) lag in ASD, and findings have been inconsistent. Using multi-echo fMRI data with improved artifact detection and removal, we find differences in lag structure between task and rest states, but not between adolescents with ASD and typically developing peers. Additional analyses exploring links with arterial transit time, however, highlight the impact of vascular organization on BOLD lag patterns and its potential to confound measures of neural dynamics.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Saturação de Oxigênio , Descanso
5.
J Neurosci Res ; 99(9): 2046-2058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048600

RESUMO

Digging behavior is often used to test motor function and repetitive behaviors in mice. Different digging paradigms have been developed for behaviors related to anxiety and compulsion in mouse lines generated to recapitulate genetic mutations leading to psychiatric and neurological disorders. However, the interpretation of these tests has been confounded by the difficulty of determining the motivation behind digging in mice. Digging is a naturalistic mouse behavior that can be focused toward different goals, that is foraging for food, burrowing for shelter, burying objects, or even for recreation as has been shown for dogs, ferrets, and human children. However, the interpretation of results from current testing protocols assumes the motivation behind the behavior often concluding that increased digging is a repetitive or compulsive behavior. We asked whether providing a choice between different types of digging activities would increase sensitivity to assess digging motivation. Here, we present a test to distinguish between burrowing and exploratory digging in mice. We found that mice prefer burrowing when the option is available. When food restriction was used to promote a switch from burrowing to exploration, males readily switched from burrowing to digging outside, while females did not. In addition, when we tested a model of intellectual disability and autism spectrum disorder that had shown inconsistent results in the marble burying test, the Cc2d1a conditional knockout mouse, we found greatly reduced burrowing only in males. Our findings indicate that digging is a nuanced motivated behavior and suggest that male and female rodents may perform it differently.


Assuntos
Aprendizagem por Discriminação/fisiologia , Comportamento Exploratório/fisiologia , Privação de Alimentos/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Biol Psychiatry ; 85(9): 760-768, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732858

RESUMO

BACKGROUND: The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS: CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS: We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS: Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.


Assuntos
Transtorno Autístico/metabolismo , AMP Cíclico/metabolismo , Hipocampo/metabolismo , Deficiência Intelectual/metabolismo , Proteínas Repressoras/metabolismo , Memória Espacial/fisiologia , Animais , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Caracteres Sexuais , Transdução de Sinais
7.
Front Neurosci ; 11: 576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163000

RESUMO

There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.

8.
Front Neurosci ; 11: 389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769741

RESUMO

Fractional anisotropy (FA) threshold is commonly used to perform diffusion MRI tractography. However, FA threshold may be one aspect of tractography that needs additional scrutiny in accurately assessing pathways in immature, developing brains, as well as in adult brains. Using high-angular resolution diffusion MRI (HARDI) tractography without an FA threshold, we identified the arcuate fasciculus (AF) of 83 healthy subjects ranging in age from 40 gestational weeks (GW) (newborns) to 28-year-old adults. The AF was identified in both hemispheres in all subjects with high inter-rater reliability. The detected AF included regions with very low FA values. The entire AF was segmented into anterior, posterior, and long tracts. Growth and laterality patterns were investigated using tract count (number of detected streamlines), total volume of imaging voxels (touched by the detected streamlines), mean length, mean FA, and mean apparent diffusion coefficient (ADC). Comparison of subjects under 3 years old, to those that were older, revealed the three AF tracts that took different developmental courses. As expected, the anterior and long tracts showed lower ADC values in subjects over 3 years old, while the posterior tract showed higher ADC in that same age range. The posterior tract did not show age-related effect in terms of FA, tract count, length, and volume. These results suggest that the posterior AF tract shows a matured state, indexed by most of the used measurements in early postnatal developmental ages, and ADC is a measurement that can detect further maturation of the posterior tract. Interestingly, in all tracts, hemispheric asymmetries were found in raw (leftright) tract count, as well as in raw volume (left

9.
Cereb Cortex ; 27(12): 5683-5695, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913428

RESUMO

The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development.


Assuntos
Movimento Celular , Neurônios/citologia , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Imageamento Tridimensional , Lactente , Recém-Nascido , Vias Neurais/citologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Tálamo/diagnóstico por imagem , Adulto Jovem
10.
Brain Behav ; 6(7): e00483, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27247853

RESUMO

INTRODUCTION: The goal of this project was to study the white and gray matter brain pathways of young children with autism spectrum disorder (ASD) and investigate how ASD brains differ from those of typically developing children of the same age. METHODS: High angular resolution resolution diffusion imaging tractography and diffusion tensor imaging tractography were used to analyze the brains of two 3-year-old children with ASD and two age-matched controls. RESULTS: In the ASD brains, the callosal and corticopontine pathways were thinner overall and terminal areas in the cortical gray matter were significantly smaller. The ASD brains had more short-range u-fibers in the frontal lobe compared to the control brains. Gray matter pathways were found disorganized with less coherency in the ASD brain, specifically the lateral aspects of the middle part of the brain including motor areas, and both medial and lateral surfaces of the anterior frontal brain regions. CONCLUSION: These findings show our tractography technique is useful for identifying differences in brain pathways between the ASD and control groups. Given that scanning the brain of 3-year-old children with or even without ASD is challenging, postmortem scanning may offer valuable insights into the connectivity in the brain of young children with ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Masculino
11.
Int J Dev Neurosci ; 50: 26-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26948153

RESUMO

Major long-range white matter pathways (cingulum, fornix, uncinate fasciculus [UF], inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus [ILF], thalamocortical [TC], and corpus callosal [CC] pathways) were identified in eighty-three healthy humans ranging from newborn to adult ages. We tracked developmental changes using high-angular resolution diffusion MR tractography. Fractional anisotropy (FA), apparent diffusion coefficient, number, length, and volume were measured in pathways in each subject. Newborns had fewer, and more sparse, pathways than those of the older subjects. FA, number, length, and volume of pathways gradually increased with age and reached a plateau between 3 and 5 years of age. Data were further analyzed by normalizing with mean adult values as well as with each subject's whole brain values. Comparing subjects of 3 years old and under to those over 3 years old, the studied pathways showed differential growth patterns. The CC, bilateral cingulum, bilateral TC, and the left IFOF pathways showed significant growth both in volume and length, while the bilateral fornix, bilateral ILF and bilateral UF showed significant growth only in volume. The TC and CC took similar growth patterns with the whole brain. FA values of the cingulum and IFOF, and the length of ILF showed leftward asymmetry. The fornix, ILF and UF occupied decreased space compared to the whole brain during development with higher FA values, likely corresponding to extensive maturation of the pathways compared to the mean whole brain maturation. We believe that the outcome of this study will provide an important database for future reference.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Corpo Caloso/crescimento & desenvolvimento , Vias Neurais/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Adolescente , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Lactente , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Substância Branca/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...