Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 100(9): 101335, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34329985

RESUMO

New arrangements of chicken major histocompatibility complex (MHC) class I BF and class IV BG genes are created through recombination. Characterizing the immune responses of such recombinants reveals genes or gene regions that contribute to immunity. Inbred Line UCD 003 (B17B17) served as the genetic background for congenic lines, each containing a unique MHC recombinant. After an initial cross to introduce a specific recombinant, 10 backcrosses to the inbred line produced lines with 99.9% genetic uniformity. The current study compared Rous sarcoma virus (RSV) tumor growth in 5 congenic lines homozygous for MHC recombinants (003.R1 = BF24-BG23, 003.R2 = BF2-BG23, 003.R4 = BF2-BG23, 003.R5 = BF21-BG19, and 003.R13 = BF17-BG23). Two experiments used a total of 70 birds from the 5 congenic lines inoculated with 20 pock forming units of RSV subgroup C at 6 wk of age. Tumor size was scored 6 times over 10 wk postinoculation followed by assignment of a tumor profile index (TPI) based on the tumor size scores. Tumor growth over time and rank transformed TPI values were analyzed by least squares ANOVA. Tumor size increased over the experimental period in all genotypes through 4 wk postinoculation. After this time, tumor size increased in Lines 003.R1, plateaued in Lines 003.R2, 003.R4, and 003.R13, and declined in 003.R5. Tumor growth over time was significantly lower in Line 003.R5 compared with all other genotypes. In addition, Line 003.R5 chickens had significantly lower TPI values compared with Lines 003.R2, 003.R4, and 003.R13. The TPI of Line 003.R1 did not differ significantly from any of the other genotypes. The BF21 in Line 003.R5 produced a greater response against subgroup C RSV tumors than did BF24, found in 003.R1; BF2 found in 003.R2 and R4 as well as BF17 found in 003.R13.


Assuntos
Sarcoma Aviário , Animais , Galinhas/genética , Genótipo , Histocompatibilidade , Complexo Principal de Histocompatibilidade/genética , Sarcoma Aviário/genética
2.
Poult Sci ; 99(10): 4804-4808, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988515

RESUMO

Recombination within the chicken major histocompatibility complex (MHC) has enabled more precise identification of genes controlling immune responses. Chicken MHC genes include BF, MHC class I; BL, MHC class II; and BG, MHC class IV that are closely linked on chromosome 16. A new recombination occurred during the 10th backcross generation to develop congenic lines on the inbred Line UCD 003 (B17B17) background. Recombinant R13 (BF17-BG23) was found in a single male chick from the Line 003.R1 (BF24-BG23) backcross. An additional backcross of this male to Line UCD 003 females increased the number of R13 individuals. Two trials tested this new recombinant for antibody production against the T cell-dependent antigen, bovine red blood cells. Fifty-one progeny segregating for R13R13 (n = 10), R13B17 (n = 26), and B17B17 (n = 15) genotypes were produced by a single R13B17 male mated to 5 R13B17 dams. One milliliter of 2.5% bovine red blood cell was injected intravenously into all genotypes at 4 and 11 wk of age to stimulate primary and secondary immune responses, respectively. Blood samples were collected 7 d after injection. Serum total and mercaptoethanol-resistant antibodies against bovine red blood cell were measured by microtiter methods. The least squares ANOVA used to evaluate all antibody titers included trial and B genotype as main effects. Significant means were separated by Fisher's protected least significant difference at P < 0.05. R13R13 chickens had significantly lower primary total and mercaptoethanol-resistant antibodies than did the R13B17 and B17B17 genotypes. Secondary total and mercaptoethanol-resistant antibodies were significantly lower in R13R13 chickens than in R13B17 but not B17B17 chickens. Gene differences generated through recombination impacted the antibody response of R13 compared with B17. Secondary antibody titers were not substantially higher than the primary titers suggesting that the memory response had waned in the 7-wk interval between injections. Overall, the results suggest that the lower antibody response in R13R13 homozygotes may be caused by recombination affecting a region that contributes to higher antibody response.


Assuntos
Formação de Anticorpos , Galinhas , Eritrócitos , Complexo Principal de Histocompatibilidade , Proteínas Recombinantes , Animais , Anticorpos/sangue , Bovinos , Galinhas/genética , Eritrócitos/imunologia , Feminino , Genótipo , Memória Imunológica/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...