Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2829-2847, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38436428

RESUMO

Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.


Assuntos
Arabidopsis , Citocinese , Glucanos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glucanos/metabolismo , Microscopia
3.
Plant Direct ; 5(5): e00315, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027297

RESUMO

Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.

4.
PLoS One ; 15(11): e0241627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156865

RESUMO

In plant cytokinesis, de novo formation of a cell plate evolving into the new cell wall partitions the cytoplasm of the dividing cell. In our earlier chemical genomics studies, we identified and characterized the small molecule endosidin-7, that specifically inhibits callose deposition at the cell plate, arresting late-stage cytokinesis in arabidopsis. Endosidin-7 has emerged as a very valuable tool for dissecting this essential plant process. To gain insights regarding its mode of action and the effects of cytokinesis inhibition on the overall plant response, we investigated the effect of endosidin-7 through a nuclear magnetic resonance spectroscopy (NMR) metabolomics approach. In this case study, metabolomics profiles of arabidopsis leaf and root tissues were analyzed at different growth stages and endosidin-7 exposure levels. The results show leaf and root-specific metabolic profile changes and the effects of endosidin-7 treatment on these metabolomes. Statistical analyses indicated that the effect of endosidin-7 treatment was more significant than the developmental impact. The endosidin-7 induced metabolic profiles suggest compensations for cytokinesis inhibition in central metabolism pathways. This study further shows that long-term treatment of endosidin-7 profoundly changes, likely via alteration of hormonal regulation, the primary metabolism of arabidopsis seedlings. Hormonal pathway-changes are likely reflecting the plant's responses, compensating for the arrested cell division, which in turn are leading to global metabolite modulation. The presented NMR spectral data are made available through the Metabolomics Workbench, providing a reference resource for the scientific community.


Assuntos
Metaboloma , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Quinolonas/farmacologia , Arabidopsis , Citocinese/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
5.
J Vis Exp ; (162)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32865532

RESUMO

Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed for near simultaneous confocal imaging and atomic force probing, Conpokal facilitates experimentation on live microbiological samples. The added insight from paired instrumentation provides co-localization of measured mechanical properties (e.g., elastic modulus, adhesion, surface roughness) by AFM with subcellular components or activity observable through confocal microscopy. This work provides a step by step protocol for the operation of laser scanning confocal and atomic force microscopy, simultaneously, to achieve same cell, same region, confocal imaging, and mechanical characterization.


Assuntos
Microscopia de Força Atômica , Microscopia Confocal , Sobrevivência Celular , Enterococcus faecalis/citologia , Fluorescência , Células HEK293 , Humanos , Imageamento Tridimensional , Streptococcus mutans/citologia
6.
Nano Lett ; 20(8): 6135-6141, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628854

RESUMO

We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 µm deep in the brains of mice.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Nanopartículas , Animais , Circulação Cerebrovascular , Camundongos , Espectrometria de Fluorescência
7.
Methods Mol Biol ; 2177: 153-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632812

RESUMO

The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.


Assuntos
Arabidopsis/metabolismo , Glicômica/métodos , Rede trans-Golgi/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Transporte Biológico , Ensaio de Imunoadsorção Enzimática , Polissacarídeos/metabolismo
8.
Front Plant Sci ; 11: 595055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469461

RESUMO

The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response.

9.
Plant Cell ; 31(8): 1879-1898, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175171

RESUMO

The dynamic trans-Golgi network/early endosome (TGN/EE) facilitates cargo sorting and trafficking and plays a vital role in plant development and environmental response. Transport protein particles (TRAPPs) are multi-protein complexes acting as guanine nucleotide exchange factors and possibly as tethers, regulating intracellular trafficking. TRAPPs are essential in all eukaryotic cells and are implicated in a number of human diseases. It has been proposed that they also play crucial roles in plants; however, our current knowledge about the structure and function of plant TRAPPs is very limited. Here, we identified and characterized AtTRAPPC11/RESPONSE TO OLIGOGALACTURONIDE2 (AtTRAPPC11/ROG2), a TGN/EE-associated, evolutionarily conserved TRAPP protein in Arabidopsis (Arabidopsis thaliana). AtTRAPPC11/ROG2 regulates TGN integrity, as evidenced by altered TGN/EE association of several residents, including SYNTAXIN OF PLANTS61, and altered vesicle morphology in attrappc11/rog2 mutants. Furthermore, endocytic traffic and brefeldin A body formation are perturbed in attrappc11/rog2, suggesting a role for AtTRAPPC11/ROG2 in regulation of endosomal function. Proteomic analysis showed that AtTRAPPC11/ROG2 defines a hitherto uncharacterized TRAPPIII complex in plants. In addition, attrappc11/rog2 mutants are hypersensitive to salinity, indicating an undescribed role of TRAPPs in stress responses. Overall, our study illustrates the plasticity of the endomembrane system through TRAPP protein functions and opens new avenues to explore this dynamic network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteômica/métodos , Rede trans-Golgi/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endossomos/metabolismo , Transporte Proteico , Rede trans-Golgi/genética
10.
Plant Cell ; 31(3): 627-644, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760563

RESUMO

The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicômica , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Carboidratos/imunologia , Parede Celular/metabolismo , Epitopos/imunologia , Mutação , Transporte Proteico , Proteínas Qa-SNARE/genética , Rede trans-Golgi/metabolismo
11.
Data Brief ; 21: 1649-1653, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505894

RESUMO

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background fluorescence and spectra overlap. This paper described the methodology and determination of the correction factors, which are useful data and reference points for researchers working on fluorescence measurement of membrane protein complexes in live bacteria cells. Further interpretation and discussion of these data can be found in "Comparison of in vitro and in vivo oligomeric states of a wild type and mutant trimeric inner membrane multidrug transporter" (Wang et al., in press).

12.
Biochem Biophys Rep ; 16: 122-129, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417130

RESUMO

Many membrane proteins exist and function as oligomers or protein complexes. Routine analytical methods involve extraction and solubilization of the proteins with detergents, which could disturb their actual oligomeric state. AcrB is a trimeric inner membrane multidrug transporter in E. coli. In previous studies, we created a mutant AcrBP223G, which behaves like a monomer when extracted from the cell membrane. However, the actual oligomeric state of AcrBP223G in cell membranes remained unclear, which complicated the interpretation of the mechanism by which the mutation affects function. Here we used several complementary methods to determine the oligomeric state of AcrBP223G in E. coli cell membranes. Two sets of quantitative fluorescent techniques were exploited. For these, we created fluorescent tagged AcrB, AcrB-CFP and AcrB-YPet. Fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) were employed to characterize independently the efficiency of energy transfer between co-expressed AcrB-CFP and AcrB-YPet, and the diffusion coefficient of AcrB-YPet and AcrBP223G-YPet in live E. coli cells. Second, we introduced Cys pairs at the inter-subunit interface and used controlled oxidation to probe inter-subunit distances. The results from all studies converge on the conclusion that AcrBP223G exists as a trimer in cell membranes, which dissociates during the purification steps. The small change in trimer affinity and structure leads to a significant loss of AcrB activity. In addition, throughout this study we developed protocols and established benchmark values, useful for further studies on membrane protein associations in cell membranes.

13.
Biosens Bioelectron ; 109: 206-213, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29567565

RESUMO

A highly efficient method for aptamer screening with real-time monitoring of the SELEX process was described by silver decahedra nanoparticles (Ag10-NPs) enhanced surface plasmon resonance imaging (SPRI). A microarray chip was developed by immobilization of target protein (Lactoferrin (Lac)) and control proteins (α-lactalbumin (α), ß-lactoglobulin (ß), casein, and bovine serum albumin (BSA)) on the biochip surface. Ag10-NPs were conjugated with an ssDNA library (lib) (Ag10-NPs-library) that consisted of a central 40 nt randomized sequence and a 20 nt fixed primer sequence. Introduction of the Ag10-NPs-library to the SPRI flow channels drastically increased the sensitivity of SPRI signal for real-time monitoring of SELEX. The work allows rapid screening of potential targets, and yields nine aptamers with high affinity (nanomolar range) for Lac after only six-rounds of selection. The aptamer Lac 13-26 was then further tested by SPRI, and the results demonstrated that the aptamer had the capacity to be ultra-sensitive for specific detection of Lac. The novel SPRI-SELEX method demonstrated here showed many advantages of real-time evaluation, high throughput, and high efficiency.


Assuntos
Técnicas Biossensoriais , Lactoferrina/isolamento & purificação , Nanopartículas/química , Técnica de Seleção de Aptâmeros , Animais , Aptâmeros de Nucleotídeos/química , Caseínas/química , Bovinos , DNA de Cadeia Simples , Humanos , Lactalbumina/química , Lactoferrina/química , Análise Serial de Proteínas/métodos , Soroalbumina Bovina/química , Prata/química , Ressonância de Plasmônio de Superfície
14.
Methods Mol Biol ; 1459: 47-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27665550

RESUMO

Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Via Secretória , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exocitose , Exossomos/metabolismo , Complexo de Golgi/metabolismo , Fusão de Membrana , Organelas/metabolismo , Transporte Proteico , Proteômica , Vesículas Secretórias/metabolismo , Leveduras/metabolismo
15.
Plant Signal Behav ; 11(3): e984520, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408949

RESUMO

Cytokinesis in plants requires the activity of RAB GTPases to regulate vesicle-mediated contribution of material to the developing cell plate. While some plant RAB GTPases have been shown to be involved in cell plate formation, many still await functional assignment. Here, we report cell plate localization for YFP-RABA1e in Arabidopsis thaliana and use the cytokinesis inhibitor Endosidin 7 to provide a detailed description of its localization compared to YFP-RABA2a. Differences between YFP-RABA2a and YFP-RABA1e were observed in late-stage cell plates under DMSO control treatment, and became more apparent under Endosidin 7 treatment. Taken together, our results suggest that individual RAB GTPases might make different contributions to cell plate formation and further demonstrates the utility of ES7 probe to dissect them.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Citocinese/fisiologia , Quinolonas/farmacologia , Proteínas rab de Ligação ao GTP/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/análise , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Citocinese/efeitos dos fármacos , Transdução de Sinais , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/metabolismo
16.
ACS Appl Mater Interfaces ; 7(31): 17122-30, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26193345

RESUMO

The fabrication of large-scale, solid-supported lipid bilayer (SLB) arrays has traditionally been an arduous and complex task, primarily due to the need to maintain SLBs within an aqueous environment. In this work, we demonstrate the use of trehalose vitrified phospholipid vesicles that facilitate on-demand generation of microarrays, allowing each element a unique composition, for the label-free and high-throughput analysis of biomolecular interactions by SPR imaging (SPRi). Small, unilamellar vesicles (SUVs) are suspended in trehalose, deposited in a spatially defined manner, with the trehalose vitrifying on either hydrophilic or hydrophobic SPR substrates. SLBs are subsequently spontaneously formed on-demand simply by in situ hydration of the array in the SPR instrument flow cell. The resulting SLBs exhibit high lateral mobility, characteristic of fluidic cellular lipid membranes, and preserve the biological function of embedded cell membrane receptors, as indicated by SPR affinity measurements. Independent fluorescence and SPR imaging studies show that the individual SLBs stay localized at the area of deposition, without any encapsulating matrix, confining coral, or boundaries. The introduced methodology allows individually addressable SLB arrays to be analyzed with excellent label-free sensitivity in a real-time, high-throughput manner. Various protein-ganglioside interactions have been selected as a model system to illustrate discrimination of strong and weak binding responses in SPRi sensorgrams. This methodology has been applied toward generating hybrid bilayer membranes on hydrophobic SPR substrates, demonstrating its versatility toward a range of surfaces and membrane geometries. The stability of the fabricated arrays, over medium to long storage periods, was evaluated and found to be good. The highly efficient and easily scalable nature of the method has the potential to be applied to a variety of label-free sensing platforms requiring lipid membranes for high-throughput analysis of their properties and constituents.


Assuntos
Bicamadas Lipídicas/metabolismo , Trealose/química , Lipossomas Unilamelares/metabolismo , Difusão , Recuperação de Fluorescência Após Fotodegradação , Cinética , Bicamadas Lipídicas/química , Análise em Microsséries/instrumentação , Microscopia de Fluorescência , Ressonância de Plasmônio de Superfície , Lipossomas Unilamelares/química
17.
Plant Physiol ; 167(2): 381-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25535279

RESUMO

Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Anisotropia , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Benzamidas/farmacologia , Compartimento Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dinitrobenzenos/farmacologia , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Transporte Proteico/efeitos dos fármacos , Sulfanilamidas/farmacologia
18.
Plant Physiol ; 165(3): 1019-1034, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24858949

RESUMO

Although cytokinesis is vital for plant growth and development, our mechanistic understanding of the highly regulated membrane and cargo transport mechanisms in relation to polysaccharide deposition during this process is limited. Here, we present an in-depth characterization of the small molecule endosidin 7 (ES7) inhibiting callose synthase activity and arresting late cytokinesis both in vitro and in vivo in Arabidopsis (Arabidopsis thaliana). ES7 is a specific inhibitor for plant callose deposition during cytokinesis that does not affect endomembrane trafficking during interphase or cytoskeletal organization. The specificity of ES7 was demonstrated (1) by comparing its action with that of known inhibitors such as caffeine, flufenacet, and concanamycin A and (2) across kingdoms with a comparison in yeast. The interplay between cell plate-specific post-Golgi vesicle traffic and callose accumulation was analyzed using ES7, and it revealed unique and temporal contributions of secretory and endosomal vesicles in cell plate maturation. While RABA2A-labeled vesicles, which accumulate at the early stage of cell plate formation, were not affected by ES7, KNOLLE was differentially altered by the small molecule. In addition, the presence of clathrin-coated vesicles in cells containing elevated levels of callose and their reduction under ES7 treatment further support the role of endocytic membrane remodeling in the maturing cell plate while the plate is stabilized by callose. Taken together, these data show the essential role of callose during the late stages of cell plate maturation and establish the temporal relationship between vesicles and regulatory proteins at the cell plate assembly matrix during polysaccharide deposition.

19.
J Am Chem Soc ; 136(1): 60-3, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24364510

RESUMO

Borrowing principles of anhydrobiosis, we have developed a technique for self-assembling proteolipid-supported membranes on demand--simply by adding water. Intact lipid- and proteolipid vesicles dispersed in aqueous solutions of anhydrobiotic trehalose are vitrified on arbitrary substrates, producing glassy coats encapsulating biomolecules. Previous efforts establish that these carbohydrate coats arrest molecular mobilities and preserve native conformations and aggregative states of the embedded biomolecules, thereby enabling long-term storage. Subsequent rehydration, even after an extended period of time (e.g., weeks), devitrifies sugar--releasing the cargo and unmasking the substrate surface--thus triggering substrate-mediated vesicle fusion in real time, producing supported membranes. Using this method, arrays of membranes, including those functionalized with membrane proteins, can be readily produced in situ by spatially addressing vitrification using common patterning tools--useful for multiplexed or stochastic sensing and assaying of target interactions with the fluid and functional membrane surface.


Assuntos
Carboidratos/química , Bicamadas Lipídicas/química , Trealose/química , Vesículas Citoplasmáticas , Proteínas Hemolisinas/química , Água/química
20.
Anal Chem ; 81(3): 1146-53, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19178341

RESUMO

We report a microfabrication approach to generate well-defined, addressable, and regenerable lipid membrane arrays in poly(dimethylsiloxane) (PDMS) microchips for label-free analysis of lipid-protein interactions with surface plasmon resonance imaging (SPRi). The multiplexed detection is demonstrated with a tethered bilayer membrane array built in parallel microchannels. These channels allow multiple measurements to be carried out simultaneously, showing low deviations for element-to-element variation in quantifiable signal. Lipid-conjugated receptors were utilized as model systems for protein binding analysis, and the feasibility of regenerating the tethering sublayer after binding was investigated. The results show that the lipid membrane can be removed effectively by nonionic surfactant Triton X-100. The small variance in SPR signal for the buildup process, i.e., <4% RSD for 3 cycles of detection, removal, and regeneration, indicates the sensing interface is highly reproducible. A calibration curve was obtained for cholera toxin using the monosialoganglioside (GM1) receptor, displaying a linear relationship in the 25 to 175 microg/mL range with a limit of detection of 260 nM. In addition, interaction of a phosphatidylinositol (PIP) with its binding protein and biotin/avidin interactions were employed for array measurements. To further enhance the SPR detection signal, a layer-by-layer amplification strategy was demonstrated that uses biotinylated antibody, NeutrAvidin and biotinylated anti-avidin, and the signal for protein binding on the membrane increased by 400%. The tethered membrane array technology, in combination with SPRi, offers an attractive platform for studies of membrane proteins, and can also find a range of applications for rapid screening of drug candidates interacting with proteins embedded in the near-native environment.


Assuntos
Dimetilpolisiloxanos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Técnicas Analíticas Microfluídicas/métodos , Ressonância de Plasmônio de Superfície/métodos , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...