Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(11): 6820-6825, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350655

RESUMO

Tunable waveguides for propagating coherent quantum states are demanded for future applications in quantum information technology and optical data processing. We present coherent whispering gallery mode polariton states in ZnO-based hexagonal microwires at room temperature. We observed their propagation over the field of view of about 20 µm by picosecond time-resolved real space imaging using a streak camera. Spatial coherence was proven by time integrated Michelson interferometry superimposing the inverted spatial emission pattern with its original one. We furthermore show that the real and momentum space evolution of the coherent states can not only be described by the commonly used model developed for ballistically propagating Bose-Einstein condensates based on the Gross-Pitaevskii equation but equivalently by classical ray optics considering a spatially varying particle density dependent refractive index of the cavity material, not yet considered in literature so far. By changing the excitation spot size, the refractive index gradient and thus the propagation velocity is changed.

2.
Nano Lett ; 17(11): 6637-6643, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28960998

RESUMO

Realizing visionary concepts of integrated photonic circuits, nanospectroscopy, and nanosensing will tremendously benefit from dynamically tunable coherent light sources with lateral dimensions on the subwavelength scale. Therefore, we demonstrate an individual nanowire laser based device which can be gradually tuned by reversible length changes of the nanowire such that uniaxial tensile stress is applied to the respective semiconductor gain material. By straining the device, the spontaneous excitonic emission of the nanowire shifts to lower energies caused by the bandgap reduction of the semiconductor. Moreover, the optical gain spectrum of the nanolaser can be precisely strain-tuned in the high excitation regime. The tuning of the emission does not affect the laser threshold of the device, which is very beneficial for practical applications. The applied length change furthermore adjusts the laser resonances inducing a redshift of the longitudinal modes. Thus, this concept of gradually and dynamically tunable nanolasers enables controlling and modulating the coherent emission on the nanoscale without changing macroscopic ambient conditions. This concept holds therefore huge impact on nanophotonic switches and photonic circuit technology.

3.
Nanotechnology ; 27(22): 225702, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27103563

RESUMO

We report on the temporal lasing dynamics of high quality ZnO nanowires using the time-resolved micro-photoluminescence technique. The temperature dependence of the lasing characteristics and of the corresponding decay constants demonstrate the formation of an electron-hole plasma to be the underlying gain mechanism in the considered temperature range from 10 K to 300 K. We found that the temperature-dependent emission onset-time ([Formula: see text]) strongly depends on the excitation power and becomes smallest in the lasing regime, with values below 5 ps. Furthermore, the observed red shift of the dominating lasing modes in time is qualitatively discussed in terms of the carrier density induced change of the refractive index dispersion after the excitation laser pulse. This theory is supported by extending an existing model for the calculation of the carrier density dependent complex refractive index for different temperatures. This model coincides with the experimental observations and reliably describes the evolution of the refractive index after the excitation laser pulse.

4.
Nano Lett ; 14(2): 518-23, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24447178

RESUMO

High-quality CdS nanowires with uniform Sn doping were synthesized using a Sn-catalyzed chemical vapor deposition method. X-ray diffraction and transmission electron microscopy demonstrate the single crystalline wurtzite structure of the CdS/Sn nanowires. Both donor and acceptor levels, which originate from the amphoteric nature of Sn in II-VI semiconductors, are identified using low-temperature microphotoluminescence. This self-compensation effect was cross examined by gate modulation and temperature-dependent electrical transport measurement. They show an overall n-type behavior with relatively low carrier concentration and low carrier mobilities. Moreover, two different donor levels due to intrinsic and extrinsic doping could be distinguished. They agree well with both the electrical and optical data.

5.
Nano Lett ; 13(8): 3602-6, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862660

RESUMO

Tin-doped cadmium sulfide nanowires reveal donor-acceptor pair transitions at low-temperature photoluminescence and furthermore exhibit ideal resonator morphology appropriate for lasing at continuous wave pumping. The continuous wave lasing mode is proven by the evolution of the emitted power and spectrum with increasing pump intensity. The high temperature stability up to 120 K at given pumping power is determined by the decreasing optical gain necessary for lasing in an electron-hole plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...