Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 182: 109574, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822358

RESUMO

PURPOSE: Gross tumor volume (GTV) delineation for head and neck cancer (HNC) radiation therapy planning is time consuming and prone to interobserver variability (IOV). The aim of this study was (1) to develop an automated GTV delineation approach of primary tumor (GTVp) and pathologic lymph nodes (GTVn) based on a 3D convolutional neural network (CNN) exploiting multi-modality imaging input as required in clinical practice, and (2) to validate its accuracy, efficiency and IOV compared to manual delineation in a clinical setting. METHODS: Two datasets were retrospectively collected from 150 clinical cases. CNNs were trained for GTV delineation with consensus delineation as ground truth, with either single (CT) or co-registered multi-modal (CT + PET or CT + MRI) imaging data as input. For validation, GTVs were delineated on 20 new cases by two observers, once manually, once by correcting the delineations generated by the CNN. RESULTS: Both multi-modality CNNs performed better than the single-modality CNN and were selected for clinical validation. Mean Dice Similarity Coefficient (DSC) for (GTVp, GTVn) respectively between automated and manual delineations was (69%, 79%) for CT + PET and (59%,71%) for CT + MRI. Mean DSC between automated and corrected delineations was (81%,89%) for CT + PET and (69%,77%) for CT + MRI. Mean DSC between observers was (76%,86%) for manual delineations and (95%,96%) for corrected delineations, indicating a significant decrease in IOV (p < 10-5), while efficiency increased significantly (48%, p < 10-5). CONCLUSION: Multi-modality automated delineation of GTV of HNC was shown to be more efficient and consistent compared to manual delineation in a clinical setting and beneficial over a single-modality approach.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carga Tumoral , Estudos Retrospectivos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Redes Neurais de Computação
2.
Phys Med Biol ; 67(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093921

RESUMO

Objective.To establish an open framework for developing plan optimization models for knowledge-based planning (KBP).Approach.Our framework includes radiotherapy treatment data (i.e. reference plans) for 100 patients with head-and-neck cancer who were treated with intensity-modulated radiotherapy. That data also includes high-quality dose predictions from 19 KBP models that were developed by different research groups using out-of-sample data during the OpenKBP Grand Challenge. The dose predictions were input to four fluence-based dose mimicking models to form 76 unique KBP pipelines that generated 7600 plans (76 pipelines × 100 patients). The predictions and KBP-generated plans were compared to the reference plans via: the dose score, which is the average mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH) points; and the frequency of clinical planning criteria satisfaction. We also performed a theoretical investigation to justify our dose mimicking models.Main results.The range in rank order correlation of the dose score between predictions and their KBP pipelines was 0.50-0.62, which indicates that the quality of the predictions was generally positively correlated with the quality of the plans. Additionally, compared to the input predictions, the KBP-generated plans performed significantly better (P< 0.05; one-sided Wilcoxon test) on 18 of 23 DVH points. Similarly, each optimization model generated plans that satisfied a higher percentage of criteria than the reference plans, which satisfied 3.5% more criteria than the set of all dose predictions. Lastly, our theoretical investigation demonstrated that the dose mimicking models generated plans that are also optimal for an inverse planning model.Significance.This was the largest international effort to date for evaluating the combination of KBP prediction and optimization models. We found that the best performing models significantly outperformed the reference dose and dose predictions. In the interest of reproducibility, our data and code is freely available.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Bases de Conhecimento , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes
3.
Phys Med ; 99: 44-54, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609382

RESUMO

PURPOSE: Recently, it has been shown that automated treatment planning can be executed by direct fluence prediction from patient anatomy using convolutional neural networks. Proof of principle publications utilise a fixed dose prescription and fixed collimator (0°) and gantry angles. The goal of this work is to further develop these principles for the challenging lung cancer indication with variable dose prescriptions, collimator and gantry angles. First we investigate the impact of clinical applicable collimator angles and various input parameters. Then, the model is tested in a complete user independent planning workflow. METHODS: The dataset consists of 152 lung cancer patients, previously treated with IMRT. The patients are treated with either a left or a right beam setup and collimator angles and dose prescriptions adjusted to their tumour shape and stage. First we compare two CNNs with standard vs. personalised, clinical collimator angles. Next, four CNNs are trained with various combinations of CT and contour inputs. Finally, a complete user free treatment planning workflow is evaluated. RESULTS: The difference between the predicted and ground truth fluence maps for the fluence prediction CNN with all anatomical inputs in terms of the mean mean absolute error (MAE) is 4.17 × 10-4 for a fixed collimator angle and 5.46 × 10-4 for variable collimator angles. These differences vanish in terms of DVH metrics. Furthermore, the impact of anatomical inputs is small. The mean MAE is 5.88 × 10-4 if no anatomical information is given to the network. The DVH differences increase when a total user free planning workflow is examined. CONCLUSIONS: Fluence prediction with personalised collimator angles performs as good as fluence prediction with a standard collimator angle of zero degrees. The impact of anatomical inputs is small. The combination of a dose prediction and fluence prediction CNN deteriorates the fluence predictions. More investigation is required.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med Biol ; 67(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35421855

RESUMO

The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.


Assuntos
Radioterapia (Especialidade) , Aprendizado de Máquina , Redes Neurais de Computação
5.
Phys Med ; 83: 242-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33979715

RESUMO

Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions.


Assuntos
Inteligência Artificial , Radiologia , Algoritmos , Aprendizado de Máquina , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...