Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18039, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508144

RESUMO

To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number of active and idle ships, and fleet average speed. To highlight significant changes in shipping routes and operational patterns, we also compute and compare global and local vessel density maps. We compare 2020 mobility levels to those of previous years assuming that an unchanged growth rate would have been achieved, if not for COVID-19. Following the outbreak, we find an unprecedented drop in maritime mobility, across all categories of commercial shipping. With few exceptions, a generally reduced activity is observable from March to June 2020, when the most severe restrictions were in force. We quantify a variation of mobility between -5.62 and -13.77% for container ships, between +2.28 and -3.32% for dry bulk, between -0.22 and -9.27% for wet bulk, and between -19.57 and -42.77% for passenger traffic. The presented study is unprecedented for the uniqueness and completeness of the employed AIS dataset, which comprises a trillion AIS messages broadcast worldwide by 50,000 ships, a figure that closely parallels the documented size of the world merchant fleet.


Assuntos
COVID-19 , Controle de Doenças Transmissíveis , Indústrias , Pandemias , Navios , Humanos
2.
IEEE Access ; 8: 175244-175264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34868798

RESUMO

Since the beginning of 2020, the outbreak of a new strain of Coronavirus has caused hundreds of thousands of deaths and put under heavy pressure the world's most advanced healthcare systems. In order to slow down the spread of the disease, known as COVID-19, and reduce the stress on healthcare structures and intensive care units, many governments have taken drastic and unprecedented measures, such as closure of schools, shops and entire industries, and enforced drastic social distancing regulations, including local and national lockdowns. To effectively address such pandemics in a systematic and informed manner in the future, it is of fundamental importance to develop mathematical models and algorithms to predict the evolution of the spread of the disease to support policy and decision making at the governmental level. There is a strong literature describing the application of Bayesian sequential and adaptive dynamic estimation to surveillance (tracking and prediction) of objects such as missiles and ships; and in this article, we transfer some of its key lessons to epidemiology. We show that we can reliably estimate and forecast the evolution of the infections from daily - and possibly uncertain - publicly available information provided by authorities, e.g., daily numbers of infected and recovered individuals. The proposed method is able to estimate infection and recovery parameters, and to track and predict the epidemiological curve with good accuracy when applied to real data from Lombardia region in Italy, and from the USA. In these scenarios, the mean absolute percentage error computed after the lockdown is on average below 5% when the forecast is at 7 days, and below 10% when the forecast horizon is 14 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...