Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259528

RESUMO

SARS-CoV-2 mRNA vaccines are highly effective, although weak antibody responses are seen in some individuals with correlates of immunity that remain poorly understood. Here we longitudinally dissected antibody, plasmablast, and memory B cell (MBC) responses to the two-dose Moderna mRNA vaccine in SARS-CoV-2-uninfected adults. Robust, coordinated IgA and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses, but earlier and more intensely after dose two. Distinct antigen-specific MBC populations also emerged post-vaccination with varying kinetics. We identified antigen non-specific pre-vaccination MBC and post-vaccination plasmablasts after dose one and their spike-specific counterparts early after dose two that correlated with subsequent antibody levels. These baseline and response signatures can thus provide early indicators of serological efficacy and explain response variability in the population.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20241364

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-148713

RESUMO

The interaction between ephrin ligands (efn) and their receptors (Eph) is capable of inducing forward signaling, from ligand to receptor, as well as reverse signaling, from receptor to ligand. The ephrins are widely expressed in many tissues, where they mediate cell migration and adherence, properties that make the efn-Eph signaling critically important in establishing and maintaining tissue boundaries. The efn-Eph system has also received considerable attention in skeletal tissues, as ligand and receptor combinations are predicted to mediate interactions between the different types of cells that regulate bone development and homeostasis. This review summarizes our current understanding of efn-Eph signaling with a particular focus on the expression and functions of ephrins and their receptors in bone.


Assuntos
Desenvolvimento Ósseo , Movimento Celular , Efrinas , Homeostase , Ligantes , Osteoblastos , Osteoclastos
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-57074

RESUMO

The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed.


Assuntos
Animais , Camundongos , Desenvolvimento Ósseo , Regeneração Óssea , Remodelação Óssea , Cálcio da Dieta , Condrócitos , Fatores de Crescimento de Fibroblastos , Consolidação da Fratura , Fator de Crescimento Insulin-Like I , Metabolismo , Camundongos Transgênicos , Tamanho do Órgão , Osteoblastos , Osteócitos , Ligante RANK , Regeneração
5.
Journal of Bone Metabolism ; : 169-188, 2014.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-226860

RESUMO

BACKGROUND: Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. METHODS: To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. RESULTS: The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. CONCLUSIONS: The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap.


Assuntos
Calo Ósseo , Quimiocinas , Ciclo-Oxigenase 2 , Regulação para Baixo , Eritropoese , Fraturas do Fêmur , Fêmur , Consolidação da Fratura , Fraturas Ósseas , Expressão Gênica , Terapia Genética , Hematopoese , Inflamação , Análise em Microsséries , Osteogênese , Prostaglandinas , Fatores de Transcrição , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...