Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267090

RESUMO

The English SARS-CoV-2 epidemic has been affected by the emergence of new viral variants such as B.1.177, Alpha and Delta, and changing restrictions. We used statistical models and calibration of an stochastic agent-based model Covasim to estimate B.1.177 to be 20% more transmissible than the wild type, Alpha to be 50-80% more transmissible than B.1.177 and Delta to be 65-90% more transmissible than Alpha. We used these estimates in Covasim (calibrated between September 01, 2020 and June 20, 2021), in June 2021, to explore whether planned relaxation of restrictions should proceed or be delayed. We found that due to the high transmissibility of Delta, resurgence in infections driven by the Delta variant would not be prevented, but would be strongly reduced by delaying the relaxation of restrictions by one month and with continued vaccination.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265615

RESUMO

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251287

RESUMO

BackgroundFollowing the resurgence of the COVID-19 epidemic in the UK in late 2020 and the emergence of the alpha (also known as B117) variant of the SARS-CoV-2 virus, a third national lockdown was imposed from January 4, 2021. Following the decline of COVID-19 cases over the remainder of January 2021, the question of when and how to reopen schools became an increasingly pressing one in early 2021. This study models the impact of a partial national lockdown with social distancing measures enacted in communities and workplaces under different strategies of reopening schools from March 8, 2021 and compares it to the impact of continual full national lockdown remaining until April 19, 2021. MethodsWe used our previously published agent-based model, Covasim, to model the emergence of the alpha variant over September 1, 2020 to January 31, 2021 in presence of Test, Trace and Isolate (TTI) strategies. We extended the model to incorporate the impacts of the roll-out of a two-dose vaccine against COVID-19, with 200,000 daily vaccine doses prioritised by age starting with people 75 years or older, assuming vaccination offers a 95% reduction in disease acquisition risk and a 30% reduction in transmission risk. We used the model, calibrated until January 25, 2021, to simulate the impact of a full national lockdown (FNL) with schools closed until April 19, 2021 versus four different partial national lockdown (PNL) scenarios with different elements of schooling open: 1) staggered PNL with primary schools and exam-entry years (years 11 and 13) returning on March 8, 2021 and the rest of the schools years on March 15, 2020; 2) full-return PNL with both primary and secondary schools returning on March 8, 2021; 3) primary-only PNL with primary schools and exam critical years (years 11 and 13) going back only on March 8, 2021 with the rest of the secondary schools back on April 19, 2021 and 4) part-rota PNL with both primary and secondary schools returning on March 8, 2021 with primary schools remaining open continuously but secondary schools on a two-weekly rota-system with years alternating between a fortnight of face-to-face and remote learning until April 19, 2021. Across all scenarios, we projected the number of new daily cases, cumulative deaths and effective reproduction number R until April 30, 2021. ResultsOur calibration across different scenarios is consistent with alpha variant being around 60% more transmissible than the wild type. We find that strict social distancing measures, i.e. national lockdowns, were essential in containing the spread of the virus and controlling hospitalisations and deaths during January and February 2021. We estimated that a national lockdown over January and February 2021 would reduce the number of cases by early March to levels similar to those seen in October 2020, with R also falling and remaining below 1 over this period. We estimated that infections would start to increase when schools reopened, but found that if other parts of society remain closed, this resurgence would not be sufficient to bring R above 1. Reopening primary schools and exam critical years only or having primary schools open continuously with secondary schools on rotas was estimated to lead to lower increases in cases and R than if all schools opened. Without an increase in vaccination above the levels seen in January and February, we estimate that R could have increased above 1 following the reopening of society, simulated here from April 19, 2021. FindingsOur findings suggest that stringent measures were integral in mitigating the increase in cases and bringing R below 1 over January and February 2021. We found that it was plausible that a PNL with schools partially open from March 8, 2021 and the rest of the society remaining closed until April 19, 2021 would keep R below 1, with some increase evident in infections compared to continual FNL until April 19, 2021. Reopening society in mid-April, without an increase in vaccination levels, could push R above 1 and induce a surge in infections, but the effect of vaccination may be able to control this in future depending on the transmission blocking properties of the vaccines.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250839

RESUMO

BackgroundEthnic and religious minorities have been disproportionately affected by SARS-CoV-2 worldwide. The UK strictly-Orthodox Jewish community has been severely affected by the pandemic. This group shares characteristics with other ethnic minorities including larger family sizes, higher rates of household crowding and relative socioeconomic deprivation. We studied a UK strictly-Orthodox Jewish population to understand how COVID-19 had spread within this community. MethodsWe performed a household-focused cross-sectional SARS-CoV-2 serosurvey specific to three antigen targets. Randomly-selected households completed a standardised questionnaire and underwent serological testing with a multiplex assay for SARS-CoV-2 IgG antibodies. We report clinical illness and testing before the serosurvey, seroprevalence stratified by age and gender. We used random-effects models to identify factors associated with infection and antibody titres. FindingsA total of 343 households, consisting of 1,759 individuals, were recruited. Serum was available for 1,242 participants. The overall seroprevalence for SARS-CoV-2 was 64.3% (95% CI 61.6-67.0%). The lowest seroprevalence was 27.6% in children under 5 years and rose to 73.8% in secondary school children and 74% in adults. Antibody titres were higher in symptomatic individuals and declined over time since reported COVID-19 symptoms, with the decline more marked for nucleocapsid titres. InterpretationIn this tight-knit religious minority population in the UK, we report one of the highest SARS-CoV-2 seroprevalence levels in the world to date. In the context of this high force of infection, all age groups experienced a high burden of infection. Actions to reduce the burden of disease in this and other minority populations are urgently required. FundingThis work was jointly funded by UKRI and NIHR [COV0335; MR/V027956/1], a donation from the LSHTM Alumni COVID-19 response fund, HDR UK, the MRC and the Wellcome Trust. The funders had no role in the design, conduct or analysis of the study or the decision to publish. The authors have no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work. Research In ContextO_ST_ABSEvidence before the studyC_ST_ABSIn January 2020, we searched PubMed for articles on rates of SARS-CoV-2 infection amongst ethnic minority groups and amongst the Jewish population. Search teams included "COVID-19", "SARS-CoV-2", seroprevalence, "ethnic minority", and "Jewish" with no language restrictions. We also searched UK government documents on SARS-CoV-2 infection amongst minority groups. By January 2020, a large number of authors had reported that ethnic minority groups experienced higher numbers of cases and increased hospitalisations due to COVID-19. A small number of articles provided evidence that strictly-Orthodox Jewish populations had experienced a high rate of SARS-CoV-2 infection but extremely limited data was available on overall population level rates of infection amongst specific ethnic minority population groups. There was also extremely limited data on rates of infection amongst young children from ethnic minority groups. Added value of the studyWe report findings from a population representative, household survey of SARS-CoV-2 infection amongst a UK strictly Orthodox Jewish population. We demonstrate an extremely high seroprevalence rate of SARS-CoV-2 in this population which is more than five times the estimated seroprevalence nationally and five times the estimated seroprevalence in London. In addition the large number of children in our survey, reflective of the underlying population structure, allows us to demonstrate that in this setting there is a significant burden of disease in all age groups with secondary school aged children having an equivalent seroprevalence to adults. Implications of the available evidenceOur data provide clear evidence of the markedly disproportionate impact of SARS-CoV-2 in minority populations. In this setting infection occurs at high rates across all age groups including pre-school, primary school and secondary school-age children. Contextually appropriate measures to specifically reduce the impact of SARS-CoV-2 amongst minority populations are urgently required.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248822

RESUMO

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20202937

RESUMO

Recent findings suggest that an adequate test-trace-isolate (TTI) strategy is needed to prevent a secondary COVID-19 wave with the reopening of society in the UK. Here we assess the potential importance of mandatory masks in the parts of community and in secondary schools. We show that, assuming current TTI levels, adoption of masks in secondary schools in addition to community settings can reduce the size of a second wave, but will not prevent it; more testing of symptomatic people, tracing and isolating of their contacts is also needed. To avoid a second wave, with masks mandatory in secondary schools and in certain community settings, under current tracing levels, 68% or 46% of those with symptomatic infection would need to be tested if masks effective coverage were 15% or 30% respectively, compared to 76% and 57% if masks are mandated in community settings but not secondary schools.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20101808

RESUMO

Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computationally efficiency is such that it be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...