Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(69): 40607-40617, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542678

RESUMO

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate. Slow and rapid quenching rates induced elevated dilatational strain within the nAl particles that was measured using synchrotron X-ray diffraction (XRD). An analytical model for stress and strain in a nAl core-Al2O3 shell particle that includes creep in the shell and delamination at the core-shell boundary, was developed and used for interpretation of strain measurements. Results show rapid quenching induced 81% delamination at the particle core-shell interface also observed with Transmission Electron Microscopy (TEM). Slower quenching elevated dilatational strain without delamination. All films were prepared at approximately a 75 : 25 Al : poly(vinylidene fluoride) PVDF weight ratio and were 1 mm thick. A drop weight impact test was performed to assess ignition sensitivity and combustion. Stress altered nAl exhibited greater energy release rates and more complete combustion than untreated nAl, but reaction dynamics and kinetics proceeded in two different ways depending on the nAl quenching rate during pre-stressing.

2.
PLoS One ; 11(2): e0149146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900682

RESUMO

The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID.


Assuntos
Galinhas/genética , Proteínas de Ligação a DNA/metabolismo , Conversão Gênica , Hipermutação Somática de Imunoglobulina , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/deficiência , Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Transporte Proteico , Fatores de Transcrição/deficiência , Transcrição Gênica
3.
Biochemistry ; 49(19): 4051-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20402481

RESUMO

The Saccharomyces cerevisiae high mobility group protein HMO1 has two DNA binding domains, box A and box B, and a lysine-rich C-terminal extension. Among other functions, HMO1 has been implicated as a component of the RNA polymerase I transcription machinery. We report here that HMO1 promotes DNA apposition as evidenced by its stimulation of end-joining in the presence of T4 DNA ligase. Analysis of truncated HMO1 variants shows that enhanced DNA end-joining requires the C-terminal domain but that box A is dispensable. The efficiency of joining DNA ends with different nucleotide content parallels that of DNA ligase, and optimal ligation efficiency is attained when DNA is effectively saturated with protein, implying that HMO1 binds internal sites in preference to DNA ends. Removal of the C-terminal tail does not attenuate the self-association characteristic of HMO1 but alters the stoichiometry of binding and prevents intramolecular DNA cyclization. This suggests that the C-terminal domain mediates an accretion of HMO1 on DNA that causes in-phase DNA bending and that binding of HMO1 lacking the C-terminal domain results in out-of-phase bending. Taken together, our results show that HMO1 shares with mammalian HMGB proteins the ability to promote DNA association. Notably, the C-terminal domain mediates both DNA end-joining and an accretion of multiple HMO1 protomers on duplex DNA that produces in-phase DNA bending. This mode of binding is reminiscent of that proposed for the mammalian RNA polymerase I transcription factor UBF.


Assuntos
DNA/química , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , DNA Ligases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...