Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(24): 6601-6607, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350819

RESUMO

Heterogeneous water oxidation catalysis is central to the development of renewable energy technologies. Recent research has suggested that the reaction mechanisms are sensitive to the hole density at the active sites. However, these previous results were obtained on catalysts of different materials featuring distinct active sites, making it difficult to discriminate between competing explanations. Here, a comparison study based on heterogenized dinuclear Ir catalysts (Ir-DHC), which feature the same type of active site on different supports, is reported. The prototypical reaction was water oxidation triggered by pulsed irradiation of suspensions containing a light sensitizer, Ru(bpy)32+, and a sacrificial electron scavenger, S2O82-. It was found that at relatively low temperatures (288-298 K), the water oxidation activities of Ir-DHC on indium tin oxide (ITO) and CeO2 supports were comparable within the studied range of fluences (62-151 mW cm-2). By contrast, at higher temperatures (310-323 K), Ir-DHC on ITO exhibited a ca. 100% higher water oxidation activity than on CeO2. The divergent activities were attributed to the distinct abilities of the supporting substrates in redistributing holes. The differences were only apparent at relatively high temperatures when hole redistribution to the active site became a limiting factor. These findings highlight the critical role of the supporting substrate in determining the turnover at active sites of heterogeneous catalysts.

2.
ACS Appl Mater Interfaces ; 13(44): 51809-51828, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310110

RESUMO

Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.

3.
J Am Chem Soc ; 143(13): 5182-5190, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779171

RESUMO

Applying metal-organic frameworks (MOFs) on the surface of other materials to form multifunctional materials has recently attracted great attention; however, directing the MOF overgrowth is challenging due to the orders of magnitude differences in structural dimensions. In this work, we developed a universal strategy to mediate MOF growth on the surface of metal nanoparticles (NPs), by taking advantage of the dynamic nature of weakly adsorbed capping agents. During this colloidal process, the capping agents gradually dissociate from the metal surface, replaced in situ by the MOF. The MOF grows to generate a well-defined NP-MOF interface without a trapped capping agent, resulting in a uniform core-shell structure of one NP encapsulated in one single-crystalline MOF nanocrystal with specific facet alignment. The concept was demonstrated by coating ZIF-8 and UiO-66-type MOFs on shaped metal NPs capped by cetyltrimethylammonium surfactants, and the formation of the well-defined NP-MOF interface was monitored by spectroscopies. The defined interface outperforms ill-defined ones generated via conventional methods, displaying a high selectivity to unsaturated alcohols for the hydrogenation of an α,ß-unsaturated aldehyde. This strategy opens a new route to create aligned interfaces between materials with vastly different structural dimensions.

4.
Commun Chem ; 4(1): 64, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697569

RESUMO

Palladium absorbs large volumetric quantities of hydrogen at room temperature and ambient pressure, making the palladium hydride system a promising candidate for hydrogen storage. Here, we use Bragg coherent diffraction imaging to map the strain associated with defects in three dimensions before and during the hydride phase transformation of an individual octahedral palladium nanoparticle, synthesized using a seed-mediated approach. The displacement distribution imaging unveils the location of the seed nanoparticle in the final nanocrystal. By comparing our experimental results with a finite-element model, we verify that the seed nanoparticle causes a characteristic displacement distribution of the larger nanocrystal. During the hydrogen exposure, the hydride phase is predominantly formed on one tip of the octahedra, where there is a high number of lower coordinated Pd atoms. Our experimental and theoretical results provide an unambiguous method for future structure optimization of seed-mediated nanoparticle growth and in the design of palladium-based hydrogen storage systems.

5.
Nanoscale ; 12(36): 18545-18562, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970090

RESUMO

Intermetallic alloy nanocrystals have emerged as a promising next generation of nanocatalyst, largely due to their promise of surface tunability. Atomic control of the geometric and electronic structure of the nanoparticle surface offers a precise command of the catalytic surface, with the potential for creating homogeneous active sites that extend over the entire nanoparticle. Realizing this promise, however, has been limited by synthetic difficulties, imparted by differences in parent metal crystal structure, reduction potential, and atomic size. Further, little attention has been paid to the impact of synthetic method on catalytic application. In this review, we seek to connect the two, organizing the current synthesis methods and catalytic scope of intermetallic nanoparticles and suggesting areas where more work is needed. Such analysis should help to guide future intermetallic nanoparticle development, with the ultimate goal of generating precisely controlled nanocatalysts tailored to catalysis.

6.
Nano Lett ; 20(9): 6630-6635, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786948

RESUMO

It has been reported that the biological functions of enzymes could be altered when they are encapsulated in metal-organic frameworks (MOFs) due to the interactions between them. Herein, we probed the interactions of catalase in solid and hollow ZIF-8 microcrystals. The solid sample with confined catalase is prepared through a reported method, and the hollow sample is generated by hollowing the MOF crystals, sealing freestanding enzymes in the central cavities of hollow ZIF-8. During the hollowing process, the samples were monitored by small-angle X-ray scattering (SAXS) spectroscopy, electron microscopy, powder X-ray diffraction (PXRD), and nitrogen sorption. The interfacial interactions of the two samples were studied by infrared (IR) and fluorescence spectroscopy. IR study shows that freestanding catalase has less chemical interaction with ZIF-8 than confined catalase, and a fluorescence study indicates that the freestanding catalase has lower structural confinement. We have then carried out the hydrogen peroxide degradation activities of catalase at different stages and revealed that the freestanding catalase in hollow ZIF-8 has higher activity.


Assuntos
Estruturas Metalorgânicas , Catalase , Enzimas Imobilizadas , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Chemistry ; 26(57): 12931-12935, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32374926

RESUMO

DNAzymes are a promising class of bioinspired catalyst; however, their structural instability limits their potential. Herein, a method to stabilize DNAzymes by encapsulating them in a metal-organic framework (MOF) host is reported. This biomimetic mineralization process makes DNAzymes active under a wider range of conditions. The concept is demonstrated by encapsulating hemin-G-quadruplex (Hemin-G4) into zeolitic imidazolate framework-90 (ZIF-90), which indeed increases the DNAzyme's structural stability. The stabilized DNAzymes show activities in the presence of Exonuclease I, organic solvents, or high temperature. Owing to its elevated stability and heterogeneous nature, it is possible to perform catalysis under continuous-flow conditions, and the DNAzyme can be reactivated in situ by introducing K+ . Moreover, it is found that the encapsulated DNAzyme maintains its high enantiomer selectivity, demonstrated by the sulfoxidation of thioanisole to (S)-methyl phenyl sulfoxide. This concept of stabilizing DNAzymes expands their potential application in chemical industry.


Assuntos
DNA Catalítico , DNA Catalítico/metabolismo , Quadruplex G , Hemina , Estruturas Metalorgânicas
8.
Nanoscale ; 12(16): 8687-8692, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32267279

RESUMO

We investigated lattice strain on alloyed surfaces using ∼10 nm core-shell nanoparticles with controlled size, shape, and composition. We developed a wet-chemistry method for synthesizing small octahedral PdPt alloy nanoparticles and Au@PdPt core-shell nanoparticles with Pd-Pt alloy shells and Au cores. Upon introduction of the Au core, the size and shape of the overall nanostructure and the composition of the alloyed PdPt were maintained, enabling the use of the electrooxidation of formic acid as a probe to compare the surface structures with different lattice strain. We have found that the structure of the alloyed surface is indeed impacted by the lattice strain generated by the Au core. To further reveal the impact of lattice strain, we fine-tuned the shell thickness. Then, we used synchrotron-based X-ray diffraction to investigate the degree of lattice strain and compared the observations with the results of the formic acid electrooxidation, suggesting that there is an optimal intermediate shell thickness for high catalytic activity.

9.
Angew Chem Int Ed Engl ; 59(26): 10574-10580, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32196846

RESUMO

Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd-Ni-Pt core-shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low-temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape-controlled multimetallic nanoparticles tailored to each potential application.

10.
Nanoscale ; 12(10): 5876-5887, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32104854

RESUMO

The presence of a capping agent (CTAB) on Pd nanoparticles produces a strong static disorder in the surface region. This results in a surface softening, which contributes to an overall increase in the Debye-Waller coefficient measured by X-ray powder diffraction. Molecular dynamics and density functional theory simulations show that the adsorption-induced surface disorder is strong enough to overcome the effects of nanoparticle size and shape.

11.
Nano Lett ; 20(3): 1774-1780, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31995389

RESUMO

We studied coordination-dependent surfactant binding on shaped MOF nanocrystals. Cetyltrimethylammonium bromide (CTAB) on the surface of ZIF-8 was used as a model system. Infrared spectroscopic analysis and molecular dynamics simulations reveal different coordination environments for Zn nodes on {100} and {110} facets, resulting in different CTAB adsorption. We found that we are able to fine-tune the ratio of {100} and {110} facets in the nanocrystals. We also observed that once the MOF nanocrystals are enclosed by pure {110} facets growth along the {100} facets is terminated because the MOF nanocrystal has no surface area for CTAB adsorption. Growth can then be reinitiated through the etching of these rhombic dodecahedral nanocrystals to form a small amount of undercoordinated sites. This work represents the first systematic study of the design principles underpinning the synthesis of shaped MOF nanocrystals.

12.
Nat Commun ; 10(1): 5002, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676820

RESUMO

Metal-organic frameworks (MOFs) have recently garnered consideration as an attractive solid substrate because the highly tunable MOF framework can not only serve as an inert host but also enhance the selectivity, stability, and/or activity of the enzymes. Herein, we demonstrate the advantages of using a mechanochemical strategy to encapsulate enzymes into robust MOFs. A range of enzymes, namely ß-glucosidase, invertase, ß-galactosidase, and catalase, are encapsulated in ZIF-8, UiO-66-NH2, or Zn-MOF-74 via a ball milling process. The solid-state mechanochemical strategy is rapid and minimizes the use of organic solvents and strong acids during synthesis, allowing the encapsulation of enzymes into three prototypical robust MOFs while maintaining enzymatic biological activity. The activity of encapsulated enzyme is demonstrated and shows increased resistance to proteases, even under acidic conditions. This work represents a step toward the creation of a suite of biomolecule-in-MOF composites for application in a variety of industrial processes.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Metais/química , Biocatálise , Catalase/química , Catalase/metabolismo , Catalase/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Enzimas Imobilizadas/ultraestrutura , Estruturas Metalorgânicas/síntese química , Microscopia Eletrônica de Varredura , Difração de Pó , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/ultraestrutura , beta-Galactosidase/química , beta-Galactosidase/metabolismo , beta-Galactosidase/ultraestrutura , beta-Glucosidase/química , beta-Glucosidase/metabolismo , beta-Glucosidase/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...