Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(4): 912-922, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36746768

RESUMO

Transitions between motile and biofilm lifestyles are highly regulated and fundamental to microbial pathogenesis. H-NOX (heme-nitric oxide/oxygen-binding domain) is a key regulator of bacterial communal behaviors, such as biofilm formation. A predicted bifunctional cyclic di-GMP metabolizing enzyme, composed of diguanylate cyclase and phosphodiesterase (PDE) domains (avi_3097), is annotated downstream of an hnoX gene in Agrobacterium vitis S4. Here, we demonstrate that avH-NOX is a nitric oxide (NO)-binding hemoprotein that binds to and regulates the activity of avi_3097 (avHaCE; H-NOX-associated cyclic di-GMP processing enzyme). Kinetic analysis of avHaCE indicates a ∼four-fold increase in PDE activity in the presence of NO-bound avH-NOX. Biofilm analysis with crystal violet staining reveals that low concentrations of NO reduce biofilm growth in the wild-type A. vitis S4 strain, but the mutant ΔhnoX strain has no NO phenotype, suggesting that H-NOX is responsible for the NO biofilm phenotype in A. vitis. Together, these data indicate that avH-NOX enhances cyclic di-GMP degradation to reduce biofilm formation in response to NO in A. vitis.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/química , Óxido Nítrico/metabolismo , Cinética , Proteínas de Escherichia coli/metabolismo , Biofilmes , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Front Chem ; 7: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838196

RESUMO

This report covers major advances in the use of metal ions and complexes to hydrolyze ester and phosphate ester lipid bonds. These metal-based Lewis acids have been investigated as catalysts to isolate fatty acids from biological sources, as probes to study phospholipid bilayer properties, as tools to examine signal transduction pathways, and as lead compounds toward the discovery of therapeutic agents. Metal ions that accelerate phosphate ester hydrolysis under mild conditions of temperature and pH may have the potential to mimic phospholipase activity in biochemical applications.

3.
J Innate Immun ; 11(3): 205-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30557874

RESUMO

Pathogenic bacteria have many strategies for causing disease in humans. One such strategy is the ability to live both as single-celled motile organisms or as part of a community of bacteria called a biofilm. Biofilms are frequently adhered to biotic or abiotic surfaces and are extremely antibiotic resistant. Upon biofilm dispersal, bacteria become more antibiotic susceptible but are also able to readily infect another host. Various studies have shown that low, nontoxic levels of nitric oxide (NO) may induce biofilm dispersal in many bacterial species. While the molecular details of this phenotype remain largely unknown, in several species, NO has been implicated in biofilm-to-planktonic cell transitions via ligation to 1 of 2 characterized NO sensors, NosP or H-NOX. Based on the data available to date, it appears that NO binding to H-NOX or NosP triggers a downstream response based on changes in cellular cyclic di-GMP concentrations and/or the modulation of quorum sensing. In order to develop applications for control of biofilm infections, the identification and characterization of biofilm dispersal mechanisms is vital. This review focuses on the efforts made to understand NO-mediated control of H-NOX and NosP pathways in the 3 pathogenic bacteria Legionella pneumophila, Vibrio cholerae, and Pseudomonas aeruginosa.


Assuntos
Legionella pneumophila/fisiologia , Óxido Nítrico/fisiologia , Pseudomonas aeruginosa/fisiologia , Vibrio cholerae/fisiologia , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia
4.
Antioxid Redox Signal ; 29(18): 1872-1887, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28847157

RESUMO

SIGNIFICANCE: The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES: The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS: The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.


Assuntos
Bactérias/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo
5.
J Inorg Biochem ; 168: 55-66, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28013065

RESUMO

This paper describes the synthesis of a trinuclear Cu(II) complex (4) containing a central 1,4,5,8,9,12-hexaazatriphenylene-hexacarboxylate (hat) core (3). Low, micromolar concentrations of the negatively charged parent ligand 3 and the neutral trinuclear complex 4 were found to photocleave negatively charged pUC19 plasmid DNA with high efficiency at neutral pH (350nm, 50min, 22°C). The interactions of complex 4 with double-helical DNA were studied in detail. Scavenger and colorimetric assays pointed to the formation of Cu(I), superoxide anion radicals, hydrogen peroxide, and hydroxyl radicals during photocleavage reactions. UV-visible absorption, circular dichroism, DNA thermal denaturation, and fluorescence data suggested that the Cu(II) complex contacts double-stranded DNA in an external fashion. The persistent association of ligand 3 and complex 4 with Na(I) and/or other cations in aqueous solution might facilitate electrostatic DNA interactions.


Assuntos
Compostos Aza/química , Compostos Aza/farmacologia , Crisenos/química , Crisenos/farmacologia , Cobre/química , Cobre/farmacologia , DNA/efeitos dos fármacos , DNA/metabolismo , Processos Fotoquímicos , Dicroísmo Circular , Colorimetria , Peróxido de Hidrogênio/química , Estrutura Molecular , Superóxidos/química
6.
Chembiochem ; 16(10): 1474-82, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25955220

RESUMO

With the goal of designing a lysosomal phospholipase mimic, we optimized experimental variables to enhance Ce(IV) -assisted hydrolysis of phosphatidylcholine (PC) liposomes. Our best result was obtained with the chelating agent bis-tris propane (BTP). Similar to the hydrolytic enzyme, Ce(IV) -assisted hydrolysis of PC phosphate ester bonds was higher at lysosomal pH (∼4.8) compared to pH 7.2. In the presence of BTP, the average cleavage yield at ∼pH 4.8 and 37 °C was: 67±1 %, 5.7-fold higher than at ∼pH 7.2 and roughly equivalent to the percent of phospholipid found on the metal-accessible exo leaflet of small liposomes. No Ce(IV) precipitation was observed. When BTP was absent, there was significant turbidity, and the amount of cleavage at ∼pH 4.8 (69±1 %) was 2.1-fold higher than the yield obtained at ∼pH 7.2. Our results show that BTP generates homogenous solutions of Ce(IV) that hydrolyze phosphatidylcholine with enhanced selectivity for lysosomal pH.


Assuntos
Cério/química , Lipossomos/química , Fosfatidilcolinas/química , Trometamina/análogos & derivados , Concentração de Íons de Hidrogênio , Hidrólise , Lisossomos/química , Trometamina/química
7.
Biometals ; 25(6): 1207-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986641

RESUMO

Niemann-Pick disease and drug-induced phospholipidosis are lysosomal storage disorders in which there is an excessive accumulation of sphingomyelin in cellular lysosomes. Here we have explored the possibility of developing metal-based therapeutic agents to reverse phospholipid build-up through phosphate ester bond hydrolysis at lysosomal pH (~4.8). Towards this end, we have utilized a malachite green/molybdate-based colorimetric assay to quantitate the inorganic phosphate released upon the hydrolysis of sphingomyelin by twelve d- and f-block metal ion salts. In reactions conducted at 60 °C, the yields produced by the cerium(IV) complex Ce(NH(4))(2)(NO(3))(6) were superior. An Amplex(®) Red-based colorimetric assay and mass spectrometry were then employed to detect choline. The data consistently showed that Ce(IV) hydrolyzed sphingomyelin more efficiently at lysosomal pH: i.e., yields of choline and phosphate were 54 ± 4 and 22 ± 5 % at pH ~ 4.8, compared to 8 ± 1 and 5 ± 2 % at pH ~ 7.2. Hydrolysis at 60 °C could be significantly increased by converting sphingomyelin vesicles to mixed lipid vesicles and mixed micelles of Triton X-100. We then utilized cerium(IV) to cleave sphingomyelin at 37 °C (no Triton X-100). Although choline and phosphate levels were relatively low, hydrolysis continued to be considerably more efficient at lysosomal pH. A side by side comparison to phosphatidylcholine was then made. While the yields of choline and phosphate produced by phosphatylcholine were higher, the ratio of pH ~ 4.8 hydrolysis to pH ~ 7.2 hydrolysis was usually more favorable for sphingomyelin (37 and 60 °C).


Assuntos
Cério/farmacologia , Hidrolases/metabolismo , Lisossomos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Animais , Concentração de Íons de Hidrogênio , Hidrólise/efeitos dos fármacos , Íons/farmacologia , Lisossomos/metabolismo , Estrutura Molecular , Sais/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...