Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 54(12): 2166-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24151901

RESUMO

PURPOSE: Hippocampal sclerosis, a common cause of refractory focal epilepsy, requires hippocampal volumetry for accurate diagnosis and surgical planning. Manual segmentation is time-consuming and subject to interrater/intrarater variability. Automated algorithms perform poorly in patients with temporal lobe epilepsy. We validate and make freely available online a novel automated method. METHODS: Manual hippocampal segmentation was performed on 876, 3T MRI scans and 202, 1.5T scans. A template database of 400 high-quality manual segmentations was used to perform automated segmentation of all scans with a multi-atlas-based segmentation propagation method adapted to perform label fusion based on local similarity to ensure accurate segmentation regardless of pathology. Agreement between manual and automated segmentations was assessed by degree of overlap (Dice coefficient) and comparison of hippocampal volumes. KEY FINDINGS: The automated segmentation algorithm provided robust delineation of the hippocampi on 3T scans with no more variability than that seen between different human raters (Dice coefficients: interrater 0.832, manual vs. automated 0.847). In addition, the algorithm provided excellent results with the 1.5T scans (Dice coefficient 0.827), and automated segmentation remained accurate even in small sclerotic hippocampi. There was a strong correlation between manual and automated hippocampal volumes (Pearson correlation coefficient 0.929 on the left and 0.941 on the right in 3T scans). SIGNIFICANCE: We demonstrate reliable identification of hippocampal atrophy in patients with hippocampal sclerosis, which is crucial for clinical management of epilepsy, particularly if surgical treatment is being contemplated. We provide a free online Web-based service to enable hippocampal volumetry to be available globally, with consequent greatly improved evaluation of those with epilepsy.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Adulto , Algoritmos , Atrofia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Tamanho do Órgão , Esclerose
2.
Epilepsy Res ; 105(3): 349-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23538269

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) is the investigation of choice for detecting structural lesions that underlie and may accompany epilepsy. Despite advances in imaging technology, 20-30% of patients with refractory focal epilepsy have normal MRI scans. We evaluated the role of repeated imaging with improved MRI technology - an increase in field strength from 1.5T to 3T and superior head coils - in detecting pathology not previously seen. METHODS: Retrospective review of a large cohort of patients attending a tertiary epilepsy referral centre who underwent MRI at 1.5T (1995-2004) and subsequently 3T (2004-2011) with improved head coils. Scan reports were reviewed for the diagnoses and medical notes for the epilepsy classification. RESULTS: 804 patients underwent imaging on both scanners, the majority with focal epilepsy (87%). On repeat scanning at 3T, 37% of scans were normal and 20% showed incidental findings. Positive findings included hippocampal sclerosis (13%), malformations of cortical development (8%), other abnormalities (4%) and previous surgery (18%). A total of 37 (5%) relevant new diagnoses were made on the 3T scans not previously seen at 1.5T. The most common new findings were hippocampal sclerosis, focal cortical dysplasia and dysembryoplastic neuroepithelial tumour. These findings affected patient management with several patients undergoing neurosurgery. CONCLUSIONS: The higher field strength and improved head coils were associated with a clinically relevant increased diagnostic yield from MRI. This highlights the importance of technological advances and suggests that rescanning patients with focal epilepsy and previously negative scans is clinically beneficial.


Assuntos
Encéfalo/patologia , Epilepsia/diagnóstico , Imageamento por Ressonância Magnética , Adulto , Estudos de Coortes , Eletroencefalografia , Epilepsia/classificação , Epilepsia/epidemiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Encaminhamento e Consulta , Estudos Retrospectivos , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...