Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 184: 114352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081535

RESUMO

4-(2-Hydroxyethyl) morpholine (HEM) is widely used as a building block of macromolecules in the manufacture of pharmaceuticals and dietary supplements and could remain as an impurity in the finished products. An evaluation of HEM was conducted to identify endpoints that could be used to determine the point-of-departure (POD) for use in assessing the potential risk from exposure to HEM. No oral repeated dose toxicological studies of appropriate duration were found for HEM. Therefore, suitable analogue(s) were identified. Although oral repeated dose studies were available for the analogues, the studies were not of sufficient duration for use in the assignment of a POD for risk evaluation. Accordingly, the Threshold of Toxicological Concern (TTC) approach, which proposes that a de minimis value can be derived to qualitatively assess risk, was considered for HEM. To determine the appropriate TTC approach (genotoxic or non-genotoxic), the genotoxicity of HEM and its analogues were evaluated. The weight of the evidence indicated that HEM, and the appropriate analogues, are not genotoxic. Considering the chemical structure of HEM, the non-genotoxic Cramer class III TTC value of 1.5 µg/kg bw/day was determined to be appropriate for use in safety assessment of HEM as an impurity in products intended for human consumption.


Assuntos
Dano ao DNA , Suplementos Nutricionais , Humanos , Medição de Risco , Suplementos Nutricionais/toxicidade , Morfolinas/toxicidade , Preparações Farmacêuticas
2.
Toxicology ; 501: 153714, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141718

RESUMO

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.


Assuntos
Carcinógenos , Adutos de DNA , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Fígado , Dano ao DNA , 2-Acetilaminofluoreno/farmacologia , 2-Acetilaminofluoreno/toxicidade
3.
Foods ; 11(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140952

RESUMO

Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.

4.
Int J Toxicol ; 41(4): 297-311, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35658642

RESUMO

DNA damage is an established initiating event in the mutagenicity and carcinogenicity of genotoxic chemicals. Accordingly, assessment of this endpoint is critical for chemicals which are being developed for use in humans. To assess the ability of the Chicken Egg Genotoxicity Assay (CEGA) to detect genotoxic pharmaceuticals, a set of 23 compounds with different pharmacological and reported genotoxic effects was tested for the potential to produce nuclear DNA adducts and strand breaks in the embryo-fetal livers using the 32P-nucleotide postlabeling (NPL) and comet assays, respectively. Due to high toxicity, two aneugens, colchicine and vinblastine, and an autophagy inhibitor, hydroxychloroquine, could not be evaluated. Out of the 20 remaining pharmaceuticals, 10 including estrogen modulators, diethylstilbestrol and tamoxifen, antineoplastics cyclophosphamide, etoposide, and mitomycin C, antifungal griseofulvin, local anesthetics lidocaine and prilocaine, and antihistamines diphenhydramine and doxylamine, yielded clear positive outcomes in at least one of the assays. The antihypertensive vasodilator hydralazine and antineoplastics streptozotocin and teniposide, produced only DNA strand breaks, which were not dose-dependent, and thus, the results with these 3 pharmaceuticals were considered equivocal. No DNA damage was detected for 7 compounds, including the purine antagonist 6-thioguanine, antipyretic analgesics acetaminophen and phenacetin, antibiotic ciprofloxacin, antilipidemic clofibrate, anti-inflammatory ibuprofen, and sedative phenobarbital. However, low solubility of these compounds limited dosages tested in CEGA. Overall, results in CEGA were largely in concordance with the outcomes in other systems in vitro and in vivo, indicating that CEGA provides reliable detection of DNA damaging activity of genotoxic compounds. Further evaluations with a broader set of compounds would support this conclusion.


Assuntos
Galinhas , Dano ao DNA , Animais , Ensaio Cometa/métodos , Adutos de DNA , Humanos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Preparações Farmacêuticas
5.
Artigo em Inglês | MEDLINE | ID: mdl-31326031

RESUMO

DNA-damaging activities of twenty-four structurally diverse unsubstituted and substituted cyclic compounds were assessed in embryo-fetal chicken livers. Formation of DNA adducts and strand breaks were measured using the nucleotide 32P-postlabelling (NPL) and comet assays, respectively. Unsubstituted monocyclic benzene, polycyclic fused ring compound naphthalene, covalently connected polycyclic ring compound biphenyl, and heterocyclic ring compound fluorene did not produce DNA damage. Amino-substituted monocyclic compounds, aniline and p-phenylenediamine, as well as polycyclic 1-naphthylamine were also negative. In contrast, carcinogenic monocyclic methyl-substituted anilines: o-toluidine, 2,6-xylidine, 3,4-dimethylaniline, 4-chloro-o-toluidine; 2 methoxy-substituted methylaniline: p-cresidine; 2,4 and 2,6 diamino- or dinitro- substituted toluenes all produced DNA damage. Genotoxic polycyclic amino-substituted 2-naphthylamine, 4-aminobiphenyl, benzidine, methyl-substituted 3,2'-dimethyl-4-aminobiphenyl and 4-dimethylaminoazobenzene as well as amino- and nitro- fluorenes substituted at the 1 or 2 positions also were positive in at least one of the assays. Overall, the DNA damaging activity of cyclic compounds in embryo-fetal chicken livers reflected the type and position of the substitution on the aromatic ring. Additionally, substituted polycyclic compounds exhibited higher DNA-damaging potency compared to monocyclic chemicals. These results are congruent with in vivo findings in other species, establishing chicken eggs as a reliable system for structure-activity assessment of members of groups of related chemicals.


Assuntos
Embrião de Galinha/efeitos dos fármacos , Dano ao DNA , Hidrocarbonetos Cíclicos/toxicidade , Animais , Ensaio Cometa , Adutos de DNA/análise , Quebras de DNA de Cadeia Simples , Fígado/química , Fígado/efeitos dos fármacos , Fígado/embriologia , Estrutura Molecular , Testes de Mutagenicidade/métodos , Organismos Livres de Patógenos Específicos , Relação Estrutura-Atividade
6.
Food Chem Toxicol ; 129: 424-433, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077736

RESUMO

Formation of DNA adducts by five alkenylbenzenes, safrole, methyl eugenol, eugenol, and asarone with either α- or ß-conformation, was analyzed in fetal avian livers in two in ovo models. DNA reactivity of the carcinogens safrole and methyl eugenol was previously demonstrated in the turkey egg model, whereas non-genotoxic eugenol was negative. In the current study, alkenylbenzenes were also tested in the chicken egg model. Injections with alkenylbenzenes were administered to fertilized turkey or chicken eggs for three consecutive days. Three hours after the last injection, liver samples were evaluated for DNA adduct formation using the 32P-nucleotide postlabeling assay. DNA samples from turkey livers were also analyzed for adducts using mass spectrometry. In both species, genotoxic alkenylbenzenes safrole, methyl eugenol, α- and ß-asarone produced DNA adducts, the presence and nature of which, with exception of safrole, were confirmed by mass spectrometry, validating the sensitivity of the 32P-postlabeling assay. Overall, the results of testing were congruent between fetal turkey and chicken livers, confirming that these organisms can be used interchangeably. Moreover, data obtained in both models is comparable to genotoxicity findings in other species, supporting the usefulness of avian models for the assessment of genotoxicity as a potential alternative to animal models.


Assuntos
Derivados de Benzeno/toxicidade , Adutos de DNA/química , Fígado/efeitos dos fármacos , Animais , Derivados de Benzeno/metabolismo , Galinhas , Feto/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Relação Estrutura-Atividade , Perus
7.
Toxicol Res (Camb) ; 8(2): 123-145, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997017

RESUMO

Chemicals with carcinogenic activity in either animals or humans produce increases in neoplasia through diverse mechanisms. One mechanism is reaction with nuclear DNA. Other mechanisms consist of epigenetic effects involving either modifications of regulatory macromolecules or perturbation of cellular regulatory processes. The basis for distinguishing between carcinogens that have either DNA reactivity or an epigenetic activity as their primary mechanism of action is detailed in this review. In addition, important applications of information on these mechanisms of action to carcinogenicity testing and human risk assessment are discussed.

8.
Chem Biol Interact ; 301: 88-111, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763546

RESUMO

In the deliberations over many years on the question of thresholds for the carcinogenicity of chemicals, the dominant paradigm has been the linear no-threshold (LNT) model, derived from concepts formulated in radiation mutagenicity. Based on the analogy with radiation, the key mechanistic assumption underlying the assessment of the dose-effect of chemical-induced carcinogenicity has been that any dose, no matter how low, can lead to induction of mutations, which will result in some risk of neoplasia. The LNT assumption, however, was never well founded and, its application to chemical carcinogens, does not allow for differences in their disposition or mechanisms of action. These mechanisms include DNA-reactivity and epigenetic effects, resulting from very different properties of carcinogens, leading to different dose effects. This review of the research on dose effects of chemical carcinogens administered by repeat dosing for long duration reveals that only some experiments involving what are now recognized as DNA-reactive carcinogens yielded dose effects for induction of tumors which were consistent with the absence of a threshold (for 6/14 chemicals). None of these studies, however, included low doses documented not to produce genetic or other cellular toxicities that underlie carcinogenicity. Otherwise, most dose-effect experiments, including all with epigenetic agents (7), revealed no-observed-effect-levels for tumors, indicative of subthreshold doses. Based on highly informative experimental data, including relevant mechanistic data, it is concluded that no-effect-levels exist for both carcinogen-induced precursor effects and neoplasia. Accordingly, we conclude that, at non-toxic dosages, thresholds exist for the induction of experimental cancer by all types of carcinogens.


Assuntos
Carcinógenos/toxicidade , DNA/genética , Epigênese Genética/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos
9.
Toxicol Sci ; 166(1): 82-96, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102407

RESUMO

The Chicken Egg Genotoxicity Assay (CEGA) demonstrated responsiveness to various DNA-reactive chemicals requiring metabolic activation, which implies broad bioactivation capability. To assess potential metabolic competence, expression profiles of metabolic genes in the embryo-chicken fetal liver were determined using microarray technology. Fertilized chicken eggs were injected under the CEGA protocol with vehicle (deionized water [DW]), the activation-dependent carcinogens, diethylnitrosamine (DEN), and N-nitrosodiethanolamine (NDELA) at doses producing no effect on survival. Previously in CEGA, DEN produced DNA damage, whereas NDELA did not. Expressions of 463 genes known to encode for phase I and II of endo- and xenobiotic metabolism were detected on the array. DW did not affect the expression of the selected genes, deregulating less than 1% of them. In contrast, DEN at 2 mg/egg and NDELA at 4 mg/egg produced significant transcriptomic alterations, up-regulating up to 41% and down-regulating over 31% of studied genes. Both nitrosamines modulated the majority of the genes in a similar manner, sharing 64 up-regulated and 93 down-regulated genes with respect to control group, indicating similarity in the regulation of their metabolism by avian liver. Differences in gene expression between DEN and NDELA were documented for several phase I CYP 450 genes that are responsible for nitrosamine biotransformation, as well as for phase II genes that regulate detoxication reactions. These findings could underlie the difference in genotoxicity of DEN and NDELA in CEGA. In conclusion, the analysis of gene expression profiles in embryo-chicken fetal liver dosed with dialkylnitrosamines demonstrated that avian species possess a complex array of inducible genes coding for biotransformation.


Assuntos
Alternativas aos Testes com Animais , Galinhas , Nitrosaminas/toxicidade , Óvulo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Xenobióticos/toxicidade , Animais , Biotransformação , Técnicas In Vitro , Testes de Mutagenicidade , Nitrosaminas/química , Nitrosaminas/metabolismo , Óvulo/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo
11.
Food Chem Toxicol ; 115: 228-243, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29548853

RESUMO

Genotoxicity of flavor and fragrance materials was assessed in Turkey Egg Genotoxicity Assay (TEGA) using 32P-nucleotide postlabeling (NPL) and comet assays to detect hepatic DNA adducts and strand breaks. Twenty materials having results in GADD45a-Gluc 'BlueScreen HC' genotoxicity assay, and standard in vitro and in vivo tests, were selected to evaluate the accuracy of TEGA. Quinoline (QUI) and 2-acetylaminofluorene (AAF) served as positive comparators. Two materials, p-tert-butyldihydrocinnamaldehyde (BDHCA) and methyl eugenol (MEU) produced DNA adducts. BDHCA, p-t-butyl-α-methylhydrocinnamic aldehyde (BMHCA), trans-2-hexenal (HEX) and maltol (MAL) produced DNA strand breaks. Fifteen other materials were negative in both assays. Based on reports of oxidative DNA damage induction by MAL and 4-hydroxy-2.5-dimethyl-3(2H) furanone (HDMF), modified comet assays were conducted. Positive comet findings for MAL were not confirmed, and only equivocal evidence of oxidative damage was found. Accordingly, MAL was judged to have equivocal genotoxicity in TEGA. HDMF was positive in modified comet assay, indicating an ability to produce oxidative DNA damage. TEGA showed modest concordance with results in regulatory in vitro assays. Findings in TEGA, with few exceptions, were concordant with the results of in vivo genotoxicity and carcinogenicity testing. Thus, TEGA is an attractive alternative model for the assessment of genotoxic potential of chemicals in vivo.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Aromatizantes/toxicidade , Perfumes/toxicidade , Animais , Testes de Carcinogenicidade , Adutos de DNA/metabolismo , Ovos , Estresse Oxidativo/efeitos dos fármacos , Perus
12.
Chem Res Toxicol ; 30(7): 1470-1480, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28613844

RESUMO

Exposure to acrylonitrile induces formation of tumors at multiple sites in rats, with females being more sensitive. The present study assessed possible mechanisms of acrylonitrile tumorigenicity, covalent DNA binding, DNA breakage, and oxidative DNA damage, in two target tissues, the brain and Zymbal's glands, of sensitive female Fischer (F344) and Sprague-Dawley (SD) rats. One group received acrylonitrile in drinking water at 100 ppm for 28 days. Two other groups were administered either acrylonitrile in drinking water at 100 ppm or drinking water alone for 27 days, followed by a single oral gavage dose of 11 mg/kg bw 14C-acrylonitrile on day 28. A positive control group received a single dose of 5 mg/kg bw of 7-14C-benzo[a]pyrene, on day 27 following the administration of drinking water for 26 days. Using liquid scintillation counting, no association of radiolabeled acrylonitrile with brain DNA was found. In accelerator mass spectrometry analysis, the association of 14C of acrylonitrile with DNA in brains was detected and was similar in both strains, which may reflect acrylonitrile binding to protein as well as to DNA. Nucleotide 32P-postlabeling assay analysis of brain samples from rats of both strains yielded no evidence of acrylonitrile DNA adducts. Negative conventional comet assay results indicate the absence of direct DNA strand breaks in the brain and Zymbal's gland in both strains of rats dosed with acrylonitrile. In both rat strains, positive results in an enhanced comet assay were found only in brain samples digested with formamidopyrimidine-DNA glycosylase but not with human 8-hydroxyguanine-DNA glycosylase, indicating possible oxidative DNA damage, other than 8-oxodG formation. In conclusion, definitive evidence of DNA binding of acrylonitrile in the brain and Zymbal's gland was not obtained under the test conditions. A role for oxidative stress in tumorigenesis in the brain but not Zymbal's gland may exist.


Assuntos
Acrilonitrila/farmacologia , Dano ao DNA , DNA/química , DNA/efeitos dos fármacos , Acrilonitrila/administração & dosagem , Administração Oral , Animais , Sítios de Ligação/efeitos dos fármacos , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Feminino , Oxirredução , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
13.
Nutr Cancer ; 68(8): 1247-1261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652616

RESUMO

Regulatory authorities worldwide have found the nonnutritive sweetener, sucralose, to be noncarcinogenic, based on a range of studies. A review of these and other studies found through a comprehensive search of electronic databases, using appropriate key terms, was conducted and results of that review are reported here. An overview of the types of studies relied upon by regulatory agencies to assess carcinogenicity potential is also provided as context. Physiochemical and pharmacokinetic/toxicokinetic studies confirm stability under conditions of use and reveal no metabolites of carcinogenic potential. In vitro and in vivo assays reveal no confirmed genotoxic activity. Long-term carcinogenicity studies in animal models provide no evidence of carcinogenic potential for sucralose. In studies in healthy adults, sucralose was well-tolerated and without evidence of toxicity or other changes that might suggest a potential for carcinogenic effects. In summary, sucralose does not demonstrate carcinogenic activity even when exposure levels are several orders of magnitude greater than the range of anticipated daily ingestion levels.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Sacarose/análogos & derivados , Edulcorantes/efeitos adversos , Animais , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/toxicidade , Humanos , Medição de Risco/legislação & jurisprudência , Medição de Risco/métodos , Sacarose/efeitos adversos , Sacarose/química , Sacarose/farmacocinética , Edulcorantes/farmacocinética , Edulcorantes/toxicidade , Distribuição Tecidual , Testes de Toxicidade Crônica/métodos
14.
Crit Rev Toxicol ; 46(sup1): 3-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27677666

RESUMO

The International Agency for Research on Cancer (IARC) published a monograph in 2015 concluding that glyphosate is "probably carcinogenic to humans" (Group 2A) based on limited evidence in humans and sufficient evidence in experimental animals. It was also concluded that there was strong evidence of genotoxicity and oxidative stress. Four Expert Panels have been convened for the purpose of conducting a detailed critique of the evidence in light of IARC's assessment and to review all relevant information pertaining to glyphosate exposure, animal carcinogenicity, genotoxicity, and epidemiologic studies. Two of the Panels (animal bioassay and genetic toxicology) also provided a critique of the IARC position with respect to conclusions made in these areas. The incidences of neoplasms in the animal bioassays were found not to be associated with glyphosate exposure on the basis that they lacked statistical strength, were inconsistent across studies, lacked dose-response relationships, were not associated with preneoplasia, and/or were not plausible from a mechanistic perspective. The overall weight of evidence from the genetic toxicology data supports a conclusion that glyphosate (including GBFs and AMPA) does not pose a genotoxic hazard and therefore, should not be considered support for the classification of glyphosate as a genotoxic carcinogen. The assessment of the epidemiological data found that the data do not support a causal relationship between glyphosate exposure and non-Hodgkin's lymphoma while the data were judged to be too sparse to assess a potential relationship between glyphosate exposure and multiple myeloma. As a result, following the review of the totality of the evidence, the Panels concluded that the data do not support IARC's conclusion that glyphosate is a "probable human carcinogen" and, consistent with previous regulatory assessments, further concluded that glyphosate is unlikely to pose a carcinogenic risk to humans.

15.
Crit Rev Toxicol ; 46(sup1): 44-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27677669

RESUMO

Glyphosate has been rigorously and extensively tested for carcinogenicity by administration to mice (five studies) and to rats (nine studies). Most authorities have concluded that the evidence does not indicate a cancer risk to humans. The International Agency for Research on Cancer (IARC), however, evaluated some of the available data and concluded that glyphosate probably is carcinogenic to humans. The expert panel convened by Intertek assessed the findings used by IARC, as well as the full body of evidence and found the following: (1) the renal neoplastic effects in males of one mouse study are not associated with glyphosate exposure, because they lack statistical significance, strength, consistency, specificity, lack a dose-response pattern, plausibility, and coherence; (2) the strength of association of liver hemangiosarcomas in a different mouse study is absent, lacking consistency, and a dose-response effect and having in high dose males only a significant incidence increase which is within the historical control range; (3) pancreatic islet-cell adenomas (non-significant incidence increase), in two studies of male SD rats did not progress to carcinomas and lacked a dose-response pattern (the highest incidence is in the low dose followed by the high dose); (4) in one of two studies, a non-significant positive trend in the incidence of hepatocellular adenomas in male rats did not lead to progression to carcinomas; (5) in one of two studies, the non-significant positive trend in the incidence of thyroid C-cell adenomas in female rats was not present and there was no progression of adenomas to carcinomas at the end of the study. Application of criteria for causality considerations to the above mentioned tumor types and given the overall weight-of-evidence (WoE), the expert panel concluded that glyphosate is not a carcinogen in laboratory animals.

16.
Regul Toxicol Pharmacol ; 79 Suppl 2: S105-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27328372

RESUMO

The use of a food substance is Generally Recognized as Safe (GRAS) through scientific procedures or experience based on common use in food. The pivotal data used for GRAS determination must be of common knowledge and should include evidence for safety under the conditions of intended use of the substance. Such evidence includes data on the identity and specifications of the substance, its properties of absorption, distribution, metabolism and excretion, and depending on the level of concern, data on genotoxicity, acute and subchronic toxicity, reproductive and developmental toxicity and carcinogenicity. Several alternative procedures can be used as the replacement for standard scientific procedures in order to improve the GRAS process.


Assuntos
Qualidade de Produtos para o Consumidor , Aditivos Alimentares/efeitos adversos , Indústria Alimentícia/métodos , Inocuidade dos Alimentos/métodos , Testes de Toxicidade/métodos , Animais , Testes de Carcinogenicidade , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Qualidade de Produtos para o Consumidor/normas , Relação Dose-Resposta a Droga , Aditivos Alimentares/normas , Indústria Alimentícia/legislação & jurisprudência , Indústria Alimentícia/normas , Regulamentação Governamental , Política de Saúde , Humanos , Valor Nutritivo , Formulação de Políticas , Recomendações Nutricionais , Medição de Risco , Estados Unidos , United States Food and Drug Administration
17.
Toxicol Sci ; 150(2): 301-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26719370

RESUMO

Certain alkenylbenzenes (AB), flavoring chemicals naturally occurring in spices and herbs, are established to be cytotoxic and hepatocarcinogenic in rodents. The purpose of the present study was to determine the DNA damaging potential of key representatives of this class using the Turkey Egg Genotoxicity Assay. Medium white turkey eggs with 22- to 24-day-old fetuses received three injections of nine AB with different carcinogenic potentials: safrole (1, 2 mg/egg), methyl eugenol (2, 4 mg/egg), estragole (20, 40 mg/egg), myristicin (25, 50 mg/egg), elemicin (20, 50 mg/egg), anethole (5, 10 mg/egg), methyl isoeugenol (40, 80 mg/egg), eugenol (1, 2.5 mg/egg), and isoeugenol (1, 4 mg/egg). Three hours after the last injection, fetal livers were harvested for measurement of DNA strand breaks, using the comet assay and DNA adducts formation, using the nucleotide(3) (2)P-postlabeling assay. Estragole, myristicin, and elemicin induced DNA stand breaks. These compounds as well as safrole, methyl eugenol and anethole, at the highest doses tested, induced DNA adduct formation. Methyl isoeugenol, eugenol, and isoeugenol did not induce genotoxicity. The genotoxic AB all had the structural features of either a double bond in the alkenyl side chain at the terminal 2',3'-position, favorable to formation of proximate carcinogenic 1'-hydroxymetabolite or terminal epoxide, or the absence of a free phenolic hydroxyl group crucial for formation of a nontoxic glucuronide conjugate. In contrast, methyl isoeugenol, eugenol and isoeugenol, which were nongenotoxic, possessed chemical features, unfavorable to activation.


Assuntos
Derivados de Benzeno , Benzodioxóis , Dano ao DNA , Aromatizantes/toxicidade , Fígado/efeitos dos fármacos , Perus , Animais , Derivados de Benzeno/química , Derivados de Benzeno/toxicidade , Benzodioxóis/química , Benzodioxóis/toxicidade , Ensaio Cometa , Adutos de DNA/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Aromatizantes/química , Fígado/embriologia , Fígado/metabolismo , Fígado/patologia , Estrutura Molecular , Testes de Mutagenicidade , Relação Estrutura-Atividade , Perus/embriologia
18.
Arch Toxicol ; 90(2): 427-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25510676

RESUMO

Male rats are more susceptible to the induction of liver cancer by the aromatic amine 2-acetylaminofluorene (AAF) than are females. To assess the basis for this difference and to determine whether sex differences in susceptibility to AAF are present in human liver cells, the DNA reactivity of AAF was measured in livers of male and female Sprague-Dawley (SD) rats and in cultured SD rat and human hepatocytes of both sexes. In livers of rats administered oral doses of AAF, the total levels of adducts measured by nucleotide postlabelling at up to 8 weeks were about twofold greater in males than in females. Similarly, the level of AAF-DNA adducts formed in cultured male rat hepatocytes dosed with AAF was about twofold greater than in female rat hepatocytes. Also, the level of DNA repair synthesis was about threefold greater in AAF-dosed cultured male rat hepatocytes compared with female, indicating that the greater adduct levels in males was not due to lesser repair. In contrast, in cultured human hepatocytes of both sexes, AAF produced similar levels of adducts and DNA repair synthesis, which were intermediate between those produced in male and female rat hepatocytes. Thus, the greater susceptibility of male rats to AAF hepatocarcinogenicity is due at least in part to greater bioactivation and formation of AAF-DNA adducts in hepatocytes. Moreover, the data from human hepatocytes suggest that human liver could be less susceptible than male rat liver to the carcinogenic effects of aromatic amine carcinogens of the AAF type.


Assuntos
2-Acetilaminofluoreno/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Adulto , Idoso , Animais , Células Cultivadas , Adutos de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Fatores Sexuais
19.
Environ Mol Mutagen ; 56(4): 356-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25361439

RESUMO

Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.


Assuntos
Anisóis/toxicidade , Testes de Mutagenicidade/métodos , Derivados de Alilbenzenos , Animais , Ensaio Cometa/métodos , Adutos de DNA , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Testes para Micronúcleos , Ratos Endogâmicos F344 , Safrol/toxicidade , Estômago/efeitos dos fármacos
20.
Food Chem Toxicol ; 74: 28-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218219

RESUMO

The alkenylbenzene methyleugenol occurs naturally in a variety of spices and herbs, including basil, and their essential oils. At high dose levels methyleugenol induces hepatocarcinogenicity in rodents following bioactivation to 1'-sulfooxymethyleugenol which forms DNA adducts. This study investigated whether the inhibitory effect of the basil flavonoid nevadensin on sulfotransferase (SULT)-mediated bioactivation of methyleugenol observed in vitro would also be reflected in a reduction of DNA adduct formation and a reduction in an early marker for liver carcinogenesis in an 8-week rat study. Co-exposure to methyleugenol and nevadensin orally resulted in a significant inhibition of liver methyleugenol DNA adduct formation and in inhibition of hepatocellular altered foci induction, representing indicators for initiation of neoplasia. These results suggest that tumor formation could be lower in rodent bioassays when methyleugenol would be dosed in a matrix containing SULT inhibitors such as nevadensin compared to experiments using the pure methyleugenol.


Assuntos
Adutos de DNA/efeitos dos fármacos , Flavonas/uso terapêutico , Neoplasias Hepáticas/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Carcinógenos/farmacologia , Eugenol/análogos & derivados , Eugenol/farmacologia , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...