Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 108(34): 14175-80, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844354

RESUMO

Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km(2)), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Truta/crescimento & desenvolvimento , Movimentos da Água , Animais , Modelos Biológicos , Especificidade da Espécie , Estados Unidos
4.
Conserv Biol ; 20(2): 319-29, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16903093

RESUMO

Implemented in 1994, the Aquatic Conservation Strategy of the Northwest Forest Plan was designed to restore and maintain ecological processes for aquatic and riparian area conservation on federal lands in the western portion of the Pacific Northwest. We used decision support models to quantitatively evaluate changes in the condition of selected watersheds. In the approximately 10 years since strategy implementation, watershed condition scores changed modestly, but conditions improved in 64% of 250 sampled watersheds, declined in 28%, and remained relatively the same in 7%. Watersheds that had the largest declines included some where wildfires burned 30-60% of their area. The overall statistical distribution of the condition scores did not change significantly, however Much of the increase in watershed condition was related to improved riparian conditions. The number of large trees (>51 cm diameter at breast height) increased 2-4%, and there were substantial reductions in tree harvest and other disturbances along streams. Whether such changes will translate into longer-term improvements in aquatic ecosystems across broader landscapes remains to be seen.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Política Pública , Árvores , Animais , Peixes , Noroeste dos Estados Unidos , Formulação de Políticas , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...