Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Cardiovasc Pharmacol ; 83(6): 635-645, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547515

RESUMO

ABSTRACT: Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.


Assuntos
Abatacepte , Rim , Obesidade , Ratos Endogâmicos Dahl , Receptores para Leptina , Linfócitos T , Animais , Abatacepte/farmacologia , Obesidade/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/deficiência , Masculino , Ratos , Progressão da Doença , Modelos Animais de Doenças , Proteinúria/tratamento farmacológico , Nefropatias/patologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Maturidade Sexual/efeitos dos fármacos
2.
Am J Physiol Heart Circ Physiol ; 326(4): H1006-H1016, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363211

RESUMO

Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.


Assuntos
Hipertensão , Interleucina-33 , Pré-Eclâmpsia , Artéria Uterina , Animais , Feminino , Gravidez , Ratos , Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Inflamação/metabolismo , Interleucina-33/farmacologia , Isquemia/metabolismo , Placenta/irrigação sanguínea , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255935

RESUMO

Preeclampsia (PE) is characterized by maternal hypertension, fetal growth restriction (FGR), and increased inflammation and populations of cytotoxic NK cells (cNKs) and inflammatory T-Helper 17 cells (TH17s). Both cytotoxic NK cells and TH17 cells are heavily influenced via IL-1ß signaling. Caspase 1 activity leads to the release of the inflammatory cytokine IL-1ß, which is increased in women with PE. Therefore, we tested the hypothesis that the inhibition of Caspase 1 with VX-765 in rats with reduced uterine perfusion pressure (RUPP) will attenuate PE pathophysiology. On gestation day (GD) 14, timed pregnant Sprague-Dawley rats underwent the RUPP or Sham procedure and were separated into groups that received either vehicle or VX-765 (50 mg/kg/day i.p.). On GD19, MAP was measured via carotid catheter and blood and tissues were collected. Bio-Plex and flow cytometry analysis were performed on placental tissues. Placental IL-1ß was increased in the RUPP rats vs. the Sham rats and treatment with VX-765 reduced IL-1ß in the RUPP rats. Caspase 1 inhibition reduced placental cNKs and TH17s in RUPP rats compared to vehicle-treated RUPP rats. Increased MAP was observed in RUPP rats compared with Sham rats and was reduced in RUPP + VX-765 rats. Placental reactive oxygen species (ROS) were elevated in RUPP rats compared to Sham rats. VX-765 administration reduced ROS in treated RUPP rats. Caspase 1 inhibition increased the number of live pups, yet had no effect on fetal weight or placental efficiency in the treated groups. In conclusion, Caspase 1 inhibition reduces placental IL-1ß, inflammatory TH17 and cNK populations, and reduces MAP in RUPP rats. These data suggest that Caspase 1 is a key contributor to PE pathophysiology. This warrants further investigation of Caspase 1 as a potential therapeutic target to improve maternal outcomes in PE.


Assuntos
Antineoplásicos , Caspase 1 , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Pressão Sanguínea , Caspase 1/metabolismo , Células Matadoras Naturais , Placenta , Pré-Eclâmpsia/tratamento farmacológico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Células Th17
4.
J Cardiovasc Pharmacol ; 82(6): 445-457, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643020

RESUMO

ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Estreptozocina/metabolismo , Ratos Endogâmicos Dahl , Hipertensão/metabolismo , Rim , Proteinúria/genética , Proteinúria/metabolismo , Insuficiência Renal Crônica/complicações , Fibrose , Pressão Sanguínea , Cloreto de Sódio na Dieta , Diabetes Mellitus/metabolismo
5.
Am J Physiol Renal Physiol ; 325(3): F363-F376, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498548

RESUMO

Prepubertal obesity is currently an epidemic and is considered as a major risk factor for renal injury. Previous studies have demonstrated that insulin resistance contributes to renal injury in obesity, independent of diabetes. However, studies examining the relationship between insulin resistance and renal injury in obese children are lacking. Recently, we reported that progressive renal injury in Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rats was associated with insulin resistance before puberty. Therefore, the aim of the present study was to examine whether decreasing insulin resistance with metformin will reduce renal injury in SSLepRmutant rats. Four-wk-old SS and SSLepRmutant rats were separated into the following two groups: 1) vehicle and 2) metformin (300 mg/kg/day) via chow diet for 4 wk. Chronic administration of metformin markedly reduced insulin resistance and dyslipidemia in SSLepRmutant rats. We did not detect any differences in mean arterial pressure between vehicle and metformin-treated SS and SSLepRmutant rats. Proteinuria was significantly greater in SSLepRmutant rats versus SS rats throughout the study, and metformin administration significantly reduced proteinuria in SSLepRmutant rats. At the end of the protocol, metformin prevented the renal hyperfiltration observed in SSLepRmutant rats versus SS rats. Glomerular and tubular injury and renal inflammation and fibrosis were significantly higher in vehicle-treated SSLepRmutant rats versus SS rats, and metformin reduced these parameters in SSLepRmutant rats. These data suggest that reducing insulin resistance with metformin prevents renal hyperfiltration and progressive renal injury in SSLepRmutant rats before puberty and may be therapeutically useful in managing renal injury during prepubertal obesity.NEW & NOTEWORTHY Childhood/prepubertal obesity is a public health concern that is associated with early signs of proteinuria. Insulin resistance has been described in obese children. However, studies investigating the role of insulin resistance during childhood obesity-associated renal injury are limited. This study provides evidence of an early relationship between insulin resistance and renal injury in a rat model of prepubertal obesity. These data also suggest that reducing insulin resistance with metformin may be renoprotective in obese children.


Assuntos
Hipertensão , Resistência à Insulina , Metformina , Obesidade Infantil , Ratos , Animais , Ratos Endogâmicos Dahl , Metformina/farmacologia , Obesidade Infantil/complicações , Rim , Proteinúria/prevenção & controle , Cloreto de Sódio na Dieta , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Pressão Sanguínea
6.
Geroscience ; 45(5): 2909-2926, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37326915

RESUMO

Alzheimer's disease (AD) exerts a tremendous socio-economic burden worldwide. Although reduced cerebral blood flow is an early and persistent symptom that precedes the loss of cognitive function in AD, the underlying molecular and cellular mechanisms remain unclear. The present study investigated whether capillary endothelial inward rectifier potassium 2 (Kir2.1) expression is reduced in TgF344-AD (AD) rats and contributes to neurovascular uncoupling and cognitive deficits in AD. Three- to fourteen-month-old AD rats expressing mutant human APP and PS1 and age-matched wild-type (WT) F344 rats were studied. AD rats exhibited higher amyloid beta (Aß) expression in the brain as early as 3 months of age and amyloid plaques by 4 months of age. Functional hyperemic responses induced by whisker stimulation were impaired at 4 months of age, which were exacerbated in 6-month- and 14-month-old AD rats. The expression of Kir2.1 protein was significantly lower in the brains of 6-month-old AD versus WT rats, and Kir2.1 coverage was lower in the cerebral microvasculature of AD than in WT rats. Aß1-42 reduced the Kir2.1 expression in cultured capillary endothelial cells. Cerebral parenchymal arterioles with attached capillaries exhibited a reduced vasodilator in response to 10 mM K+ applied to capillaries, and constricted less following administration of a Kir2.1 channel blocker, compared to WT vessels. These results indicate that capillary endothelial Kir2.1 expression is reduced and contributes to impaired functional hyperemia in AD rats at early ages, perhaps secondary to elevated Aß expression.


Assuntos
Doença de Alzheimer , Camundongos , Ratos , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Capilares/metabolismo , Células Endoteliais , Camundongos Transgênicos , Ratos Endogâmicos F344
7.
Am J Physiol Renal Physiol ; 325(1): F87-F98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167270

RESUMO

Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.


Assuntos
Interleucina-17 , Nefropatias , Ratos , Animais , Ratos Endogâmicos Dahl , Interleucina-17/farmacologia , Rim/patologia , Nefropatias/patologia , Proteinúria/patologia , Obesidade/complicações , Obesidade/patologia , Cloreto de Sódio na Dieta/farmacologia , Macrófagos/patologia
8.
Curr Opin Physiol ; 332023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009057

RESUMO

Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.

9.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R556-R567, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847598

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder with end-organ damage that presents after 20 wk of gestation. PE pathophysiology often includes vascular dysfunction and increased inflammation that continues to damage patient health even after PE resolves. Currently, there is no cure for PE beyond delivery of the fetal-placental unit. Previous clinical studies have identified elevated placental NLRP3 expression in patients with PE and suggest NLRP3 as a potential therapeutic target. In this study, we examined the effect of NLRP3 inhibition on PE pathophysiology in the reduced uterine perfusion pressure (RUPP) model rat using MCC950 (20 mg/kg/day) or esomeprazole (3.5 mg/kg/day). We hypothesized that increased NLRP3 in response to placental ischemia impairs anti-inflammatory IL-33 signaling to induce T-helper 17 cell (TH17) and cytolytic NK cell (cNK) activation, which is known to mediate oxidative stress and vascular dysfunction leading to maternal HTN and intrauterine growth restriction. RUPP rats had significantly higher placental NLRP3 expression, maternal blood pressure, fetal reabsorption rate, vascular resistance, oxidative stress, cNKs and TH17s, and decreased IL-33 compared with normal pregnant (NP) rats. NLRP3 inhibition, with either treatment, significantly reduced placental NLRP3 expression, maternal blood pressure, fetal reabsorption rates, vascular resistance, oxidative stress, cNK, and TH17 populations in RUPP rats. Based on our findings, NLRP3 inhibition reduces PE pathophysiology and esomeprazole may be a potential therapeutic for PE treatment.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Gravidez , Ratos , Feminino , Animais , Placenta/metabolismo , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Interleucina-33/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esomeprazol/metabolismo , Esomeprazol/farmacologia , Esomeprazol/uso terapêutico , Ratos Sprague-Dawley , Pressão Sanguínea , Isquemia , Inflamação/metabolismo
10.
J Pharmacol Exp Ther ; 384(3): 445-454, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507846

RESUMO

Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.


Assuntos
Hipertensão , Resistência à Insulina , Nefropatias , Obesidade Infantil , Ratos , Animais , Ratos Endogâmicos Dahl , Obesidade Infantil/metabolismo , Receptores para Leptina/metabolismo , Receptores para Leptina/uso terapêutico , Rim , Nefropatias/metabolismo , Proteinúria/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Inflamação/metabolismo , Hipertensão/tratamento farmacológico , Pressão Sanguínea
11.
Geroscience ; 44(6): 2845-2861, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767209

RESUMO

Diabetes, hypertension, and aging are major contributors to cardiovascular and chronic kidney disease (CKD). Sodium/glucose cotransporter 2 (SGLT2) inhibitors have become a preferred treatment for type II diabetic patients since they have cardiorenal protective effects. However, most elderly diabetic patients also have hypertension, and the effects of SGLT2 inhibitors have not been studied in hypertensive diabetic patients or animal models. The present study examined if controlling hyperglycemia with empagliflozin, or given in combination with lisinopril, slows the progression of renal injury in hypertensive diabetic rats. Studies were performed using hypertensive streptozotocin-induced type 1 diabetic Dahl salt-sensitive (STZ-SS) rats and in deoxycorticosterone-salt hypertensive type 2 diabetic nephropathy (T2DN) rats. Administration of empagliflozin alone or in combination with lisinopril reduced blood glucose, proteinuria, glomerular injury, and renal fibrosis in STZ-SS rats without altering renal blood flow (RBF) or glomerular filtration rate (GFR). Blood pressure and renal hypertrophy were also reduced in rats treated with empagliflozin and lisinopril. Administration of empagliflozin alone or in combination with lisinopril lowered blood glucose, glomerulosclerosis, and renal fibrosis but had no effect on blood pressure, kidney weight, or proteinuria in hypertensive T2DN rats. RBF was not altered in any of the treatment groups, and GFR was elevated in empagliflozin-treated hypertensive T2DN rats. These results indicate that empagliflozin is highly effective in controlling blood glucose levels and slows the progression of renal injury in both hypertensive type 1 and type 2 diabetic rats, especially when given in combination with lisinopril to lower blood pressure.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Hipertensão , Animais , Ratos , Glicemia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Fibrose , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Lisinopril/farmacologia , Proteinúria , Ratos Endogâmicos Dahl
12.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R299-R308, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107024

RESUMO

Prepubertal obesity (PPO) has emerged as a major health problem over the past few decades and is a risk factor for the development of proteinuria. The current study investigated whether the development of renal injury in the obese SSLepR mutant strain occurs before puberty. When determining the temporal changes in serum sex hormones in female and male SS and SSLepR mutant rats between 4 and 10 wk of age, we only observed significant increases in estradiol and testosterone levels in female and male SS rats at 10 wk of age than at 4 wk of age. The results suggest that studying both strains between 4 and 8 wk of age is appropriate to study the effects of PPO on renal injury in this model. Proteinuria was significantly higher in SSLepR mutant rats as opposed to the values observed in SS rats at 8 wk of age, and we did not observe any sex differences in proteinuria in either strain. The kidneys from the SSLepR mutant rats displayed significant glomerular and tubular injury and renal fibrosis versus the values measured in SS rats without any sex differences. Overall, we observed increased immune cell infiltration in the kidneys from SSLepR mutant rats compared with SS rats. Interestingly, female SSLepR mutant rats displayed significant increases in not only M1 macrophages (proinflammatory) but also M2 macrophages (anti-inflammatory) versus male SSLepR mutant rats. These results suggest the SSLepR mutant rat may be a useful model to study early progression of obesity-related renal injury before the onset of puberty.


Assuntos
Nefropatias , Rim , Animais , Feminino , Humanos , Nefropatias/genética , Masculino , Obesidade/complicações , Obesidade/genética , Proteinúria/genética , Puberdade , Ratos
13.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638670

RESUMO

Platelets, cellular mediators of thrombosis, are activated during sepsis and are increasingly recognized as mediators of the immune response. Platelet activation is significantly increased in sepsis patients compared to ICU control patients. Despite this correlation, the role of activated platelets in contributing to sepsis pathophysiology remains unclear. We previously demonstrated NOD-like receptor protein 3 inflammasome (NLRP3) inflammasome activation in sepsis-induced platelets from cecal-ligation puncture (CLP) rats. Activated platelets were associated with increased pulmonary edema and glomerular injury in CLP vs. SHAM controls. In this study, we investigated whether inhibition of platelet activation would attenuate NLRP3 activation and renal and pulmonary injury in response to CLP. CLP was performed in male and female Sprague Dawley (SD) rats (n = 10/group) to induce abdominal sepsis and SHAM rats served as controls. A subset of CLP animals was treated with Clopidogrel (10 mg/kg/day, CLP + CLOP) to inhibit platelet activation. At 72 h post-CLP, platelet activation and NLRP3 inflammasome assembly were evaluated, IL-1ß and IL-18 were measured in plasma, and tissues, renal and pulmonary pathology, and renal function were assessed. Activated platelets were 7.8 ± 3.6% in Sham, 22 ± 6% in CLP and significantly decreased to 14.5 ± 0.6% in CLP + CLOP (n = 8-10/group, p < 0.05). NLRP3 inflammasome assembly was inhibited in platelets of CLP + CLOP animals vs. CLP. Significant increases in plasma and kidney IL-1ß and IL-18 in response to CLP were decreased with Clopidogrel treatment. Renal injury, but not lung histology or renal function was improved in CLP + CLOP vs. CLP. These data provide evidence that activated platelets may contribute to sepsis-induced renal injury, possibly via NLRP3 activation in platelets. Platelets may be a therapeutic target to decrease renal injury in septic patients.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Sepse/metabolismo , Animais , Feminino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Ligadura , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Proteínas NLR/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
JMIR Res Protoc ; 10(10): e32911, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652281

RESUMO

BACKGROUND: Female genital mutilation/cutting (FGM/C) is a complex and deeply rooted sociocultural custom that is innately entrenched in the lives of those who continue its practice despite the physical and psychological dangers it perpetrates. FGM/C is considered a significant independent risk factor for adverse maternal and fetal outcomes in pregnancy and childbirth. Several studies in high-income countries have explored the experiences and needs of women with FGM/C as well as the knowledge of the health professionals, particularly midwives and nurses, who care for them. However, to date, no studies have evaluated the implementation of education for health professionals in high-income countries to meet the specific needs of women with FGM/C. OBJECTIVE: This study aims to explore the impact of an FGM/C education program for midwives and nurses as informed by the experiences of women with FGM/C accessing maternity, gynecological, and sexual health services in South Australia. METHODS: This study will adopt a three-phase, exploratory sequential mixed methods design. Phase 1 will involve the exploration of women with FGM/C views and experiences accessing maternity and gynecological (including sexual health) services in South Australia. The findings from phase 1 will inform phase 2: the development of an educational program for midwives and nurses on the health and cultural needs of women with FGM/C. Phase 3 will involve the evaluation of the program by measuring midwives' and nurses' changes in knowledge, attitude, and practice immediately before and after the education as well as 4 months after completing the program. Phase 1 of this study has been approved by the Women's and Children's Health Network human research ethics committee (ID number 2021/HRE00156) and the University of South Australia human research ethics committee (ID number 204096). RESULTS: Phase 1 will commence in August 2021, with the interpretation of findings being undertaken by November 2021. Phase 2 will be developed and facilitated by February 2022, and the final phase of this study will begin in March 2022. This study is expected to be completed by February 2023. CONCLUSIONS: The findings of this research will provide insight into the development and evaluation of education programs for midwives and nurses that includes collaboration with women from culturally and linguistically diverse backgrounds to address the specific cultural and health needs of communities. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/32911.

15.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R112-R124, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075808

RESUMO

Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 µg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.


Assuntos
Anticorpos Monoclonais/farmacologia , Pressão Arterial/efeitos dos fármacos , Interferon gama/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/prevenção & controle , Artéria Uterina/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Proteínas Angiogênicas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/prevenção & controle , Interferon gama/metabolismo , Isquemia/metabolismo , Isquemia/fisiopatologia , Células Matadoras Naturais/metabolismo , Placenta/metabolismo , Circulação Placentária , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Artéria Uterina/metabolismo , Artéria Uterina/fisiopatologia
16.
J Adv Nurs ; 77(10): e30-e32, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34109657

Assuntos
Refugiados , Humanos
17.
Pregnancy Hypertens ; 25: 39-47, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051437

RESUMO

We recently reported that adoptive transfer of cytolytic Natural Killer cells (cNKs) from the Reduced Uterine Perfusion Pressure (RUPP) rat induces a preeclampsia (PE)-like phenotype in pregnant rats, accompanied by increased TNF-α. The purpose of this study was to investigate a role for increased TNF-α to induce oxidative stress (ROS), decrease nitric oxide (NO) bioavailability, and induce vascular dysfunction as mechanisms of hypertension (HTN) and intrauterine growth restriction (IUGR) in RUPPs. Pregnant Sprague Dawley rats underwent the RUPP or a Sham procedure on gestation day (GD) 14. On GDs 15 and 18, a subset of Sham and RUPP rats received i.p.injections of vehicle or 0.4 mg/kg of Etanercept (ETA), a soluble TNF-α receptor (n = 10/group). On GD18, Uterine Artery Resistance Index (UARI) was measured, and on GD19, mean arterial pressure (MAP), fetal and placental weights were measured, and blood and tissues were processed for analysis. TNF-α blockade normalized the elevated MAP observed RUPP. Additionally, both fetal and placental weights were decreased in RUPP compared to Sham, and were normalized in RUPP + ETA. Placental ROS was also increased in RUPP rats compared to Sham, and remained elevated in RUPP + ETA. Compared to Sham, UARI was elevated in RUPPs while plasma total nitrate was reduced, and these were normalized in ETA treated RUPPs. In conclusion, TNF-α blockade in RUPPs reduced MAP and UARI, improved fetal growth, and increased NO bioavailability. These data suggest that TNF-α regulation of NO bioavailability is a potential mechanism that contributes to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes and fetal growth.


Assuntos
Placenta/metabolismo , Fator de Necrose Tumoral alfa/sangue , Artéria Uterina/fisiopatologia , Útero/irrigação sanguínea , Animais , Pressão Arterial , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/prevenção & controle , Humanos , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-Dawley
18.
Am J Reprod Immunol ; 85(6): e13386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33315281

RESUMO

PROBLEM: The Reduced Uterine Perfusion Pressure (RUPP) rat model of placental ischemia recapitulates many characteristics of preeclampsia including maternal hypertension, intrauterine growth restriction (IUGR), and increased cytolytic natural killer cells (cNKs). While we have previously shown a 5-fold higher cytotoxicity of RUPP NKs versus normal pregnant NKs, their role in RUPP pathophysiology remains unclear. In this study, we tested the hypotheses that (1) adoptive transfer of RUPP-stimulated NKs will induce maternal hypertension and IUGR in normal pregnant control (Sham) rats and (2) adoptive transfer of Sham NKs will attenuate maternal hypertension and IUGR in RUPP rats. METHOD OF STUDY: On gestation day (GD)14, vehicle or 5 × 106 RUPP NKs were infused i.v. into a subset of Sham rats (Sham+RUPP NK), and vehicle or 5 × 106 Sham NKs were infused i.v. into a subset of RUPP rats (RUPP+Sham NK; n = 12/group). On GD18, Uterine Artery Resistance Index (UARI) was measured. On GD19, mean arterial pressure (MAP) was measured, animals were sacrificed, and blood and tissues were collected for analysis. RESULTS: Adoptive transfer of RUPP NKs into Sham rats resulted in elevated NK activation, UARI, placental oxidative stress, and preproendothelin expression as well as reduced circulating nitrate/nitrite. This led to maternal hypertension and IUGR. RUPP recipients of Sham NKs demonstrated normalized NK activation, sFlt-1, circulating and placental VEGF, and UARI, which led to improved maternal blood pressure and normal fetal growth. CONCLUSION: These data suggest a direct role for cNKs in causing preeclampsia pathophysiology and a role for normal NKs to improve maternal outcomes and IUGR during late gestation.


Assuntos
Transferência Adotiva , Células Matadoras Naturais/transplante , Pré-Eclâmpsia/terapia , Animais , GMP Cíclico/sangue , GMP Cíclico/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Feminino , Retardo do Crescimento Fetal/prevenção & controle , Isquemia/sangue , Isquemia/metabolismo , Isquemia/terapia , Nitratos/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/sangue , Estresse Oxidativo , Fenótipo , Placenta/irrigação sanguínea , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Front Physiol ; 12: 765305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975523

RESUMO

Recently, we reported that obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats develop glomerular injury and progressive proteinuria prior to puberty. Moreover, this early progression of proteinuria was associated with elevations in GFR. Therefore, the current study examined whether treatment with lisinopril to reduce GFR slows the early progression of proteinuria in SSLepRmutant rats prior to puberty. Experiments were performed on 4-week-old SS and SSLepRmutant rats that were either treated with vehicle or lisinopril (20 mg/kg/day, drinking water) for 4 weeks. We did not observe any differences in MAP between SS and SSLepRmutant rats treated with vehicle (148 ± 5 vs. 163 ± 6 mmHg, respectively). Interestingly, chronic treatment with lisinopril markedly reduced MAP in SS rats (111 ± 3 mmHg) but had no effect on MAP in SSLepRmutant rats (155 ± 4 mmHg). Treatment with lisinopril significantly reduced proteinuria in SS and SSLepRmutant rats compared to their vehicle counterparts (19 ± 5 and 258 ± 34 vs. 71 ± 12 and 498 ± 66 mg/day, respectively). Additionally, nephrin excretion was significantly elevated in SSLepRmutant rats versus SS rats, and lisinopril reduced nephrin excretion in both strains. GFR was significantly elevated in SSLepRmutant rats compared to SS rats, and lisinopril treatment reduced GFR in SSLepRmutant rats by 30%. The kidneys from SSLepRmutant rats displayed glomerular injury with increased mesangial expansion and renal inflammation versus SS rats. Chronic treatment with lisinopril significantly decreased glomerular injury and renal inflammation in the SSLepRmutant rats. Overall, these data indicate that inhibiting renal hyperfiltration associated with obesity is beneficial in slowing the early development of glomerular injury and renal inflammation.

20.
Front Physiol ; 11: 566403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071820

RESUMO

Recently, we reported that Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats exhibit dyslipidemia and renal lipid accumulation independent of hyperglycemia that progresses to chronic kidney disease (CKD). Therefore, in the current study, we examined the effects of gemfibrozil, a lipid-lowering drug (200 mg/kg/day, orally), on the progression of renal injury in SS and SSLepRmutant rats for 4 weeks starting at 12 weeks of age. Plasma triglyceride levels were markedly elevated in the SSLepRmutant strain compared to SS rats (1193 ± 243 and 98 ± 16 mg/day, respectively). Gemfibrozil treatment only reduced plasma triglycerides in the SSLepRmutant strain (410 ± 79 mg/dL). MAP was significantly higher in the SSLepRmutant strain vs. SS rats at the end of the study (198 ± 7 vs. 165 ± 7 mmHg, respectively). Administration of gemfibrozil only lowered MAP in SSLepRmutant rats (163 ± 8 mmHg). During the course of the study, proteinuria increased to 125 ± 22 mg/day in SS rats. However, proteinuria did not change in the SSLepRmutant strain and remained near baseline (693 ± 58 mg/day). Interestingly, treatment with gemfibrozil increased the progression of proteinuria by 77% in the SSLepRmutant strain without affecting proteinuria in SS rats. The renal injury in the SSLepRmutant strain progressed to CKD. Moreover, the kidneys from SSLepRmutant rats displayed significant glomerular injury with mesangial expansion and increased renal lipid accumulation and fibrosis compared to SS rats. Treatment with gemfibrozil significantly reduced glomerular injury and lipid accumulation and improved renal function. These data indicate that reducing plasma triglyceride levels with gemfibrozil inhibits hypertension and CKD associated with obesity in SSLepRmutant rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...