Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(15): 5844-5854, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35380803

RESUMO

Halogenated inorganic complexes Ax[MHaly] (A = alkali metal or alkaline earth, M = transition or main group metal, x = 1-3, and y = 2-9) are an archetypal class of compounds that provide entry points to large areas of inorganic and physical chemistry. All of the hexahalo complexes adopt an octahedral, Oh, symmetry (or nearly so). Consequently, one of the bending modes is forbidden in both the infrared and Raman spectra. In the solid state, many of the complexes crystallize in the cubic space group Fm3̅m, which preserves the octahedral symmetry. Even for those that are not cubic, the octahedral symmetry of the [MHal6]n- ion is largely retained and, to a good approximation, so are the selection rules. In the present work, we show that by using the additional information provided by neutron vibrational spectroscopy, in combination with conventional optical spectroscopies, we can generate complete and unambiguous assignments for all the modes. Comparison of the experimental and calculated transition energies for the systems where periodic-density functional theory was possible (i.e., those for which the crystal structure is known) shows that the agreement is almost quantitative. We also provide a linear relationship that enables the prediction of the forbidden mode.

2.
Inorg Chem ; 45(26): 10951-7, 2006 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-17173454

RESUMO

The dynamics and bonding of the hydrido complex Ba[ReH9], containing the D3h face-capped trigonal prismatic [ReH9]2- ion, have been investigated by vibrational spectroscopy and density functional theory (DFT). The combination of infrared, Raman, and inelastic neutron-scattering (INS) spectroscopies has enabled observation of all the modes of the [ReH9]2- ion for the first time. We demonstrate that calculations of the isolated [ReH9]2- ion are unable to reproduce the INS spectrum and that the complete unit cell must be considered with periodic DFT to have reliable results. This is shown to be a consequence of the long-range Coulomb potential present. Analysis of the electronic structure shows that the bonding between the rhenium and the hydrogen is largely covalent. There is a small degree of covalency between the prism hydrides and the barium. The counterion is crucial to the stability of the materials; hence, variation of it potentially offers a method to fine-tune the properties of the material.

3.
J Am Chem Soc ; 125(38): 11656-61, 2003 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-13129370

RESUMO

The present work has provided a complete set of assignments for the vibrational spectrum of Rb(2)PtH(6) and Rb(2)PtD(6). To confirm the assignments, a periodic density functional theory (DFT) code has been applied to the analysis of the inelastic neutron scattering (INS) spectrum of an ionic material for the first time. The work has also provided an explanation for the unusual infrared spectrum of the potassium salt. The most significant aspect of the work is the use of the momentum transfer information provided by an INS chopper spectrometer. The straightforward method employed for the analysis of the data is applicable to any molecular system (organic or inorganic) and demonstrates the potential of these instruments for chemistry. Periodic DFT was also used to study the other A(2)PtH(6) (A = alkali metal) including, the at present, unknown Li salt, which is found to be stable. The DFT studies have also highlighted the crucial role of the cation in removing charge from the transition metal and "hydride" ligand. It is suggested that this is a general occurrence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA