Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167156

RESUMO

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834011

RESUMO

MicroRNA-29a (miR-29a) is a well characterized fibro-inflammatory molecule and its aberrant expression is linked to a variety of pathological liver conditions. The long-term effects of a high-fat diet (HFD) in combination with different levels of EtOH consumption on miR-29a expression and liver pathobiology are unknown. Mice at 8 weeks of age were divided into five groups (calorie-matched diet plus water (CMD) as a control group, HFD plus water (HFD) as a liver disease group, HFD plus 2% EtOH (HFD + 2% E), HFD + 10% E, and HFD + 20% E as intervention groups) and fed for 4, 13, 26, or 39 weeks. At each time point, analyses were performed for liver weight/body weight (BW) ratio, AST/ALT ratio, as well as liver histology assessments, which included inflammation, estimated fat deposition, lipid area, and fibrosis. Hepatic miR-29a was measured and correlations with phenotypic traits were determined. Four-week feeding produced no differences between the groups on all collected phenotypic traits or miR-29a expression, while significant effects were observed after 13 weeks, with EtOH concentration-specific induction of miR-29a. A turning point for most of the collected traits was apparent at 26 weeks, and miR-29a was significantly down-regulated with increasing liver injury. Overall, miR-29a up-regulation was associated with a lower liver/BW ratio, fat deposition, inflammation, and fibrosis, suggesting a protective role of miR-29a against liver disease progression. A HFD plus increasing concentrations of EtOH produces progressive adverse effects on the liver, with no evidence of beneficial effects of low-dose EtOH consumption. Moreover, miR-29a up-regulation is associated with less severe liver injury.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Água/metabolismo , Camundongos Endogâmicos C57BL
3.
Cells ; 13(1)2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38201293

RESUMO

High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Etanol , Feminino , Masculino , Animais , Camundongos , Etanol/farmacologia , Metabolismo dos Lipídeos , Injeções , Consumo de Bebidas Alcoólicas , Glicina
4.
Cell Mol Life Sci ; 79(3): 175, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244772

RESUMO

FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in ßIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.


Assuntos
Hipocampo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/anatomia & histologia , Células Cultivadas , Hipocampo/anatomia & histologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Proteínas tau/metabolismo
5.
Alcohol ; 89: 103-112, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32798691

RESUMO

BACKGROUND: Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS: F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS: Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS: These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.


Assuntos
Consumo de Bebidas Alcoólicas , Cromossomos de Mamíferos/genética , Epigênese Genética , Animais , Comportamento Animal , Etanol , Feminino , Ligação Genética , Masculino , Ratos
6.
Neuroscience ; 402: 23-36, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685540

RESUMO

FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração , Neurônios/fisiologia , Proteínas de Ligação a Tacrolimo/fisiologia , Animais , Comportamento Animal , Ácido Glutâmico/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Proteínas de Ligação a Tacrolimo/genética , Ácido gama-Aminobutírico/fisiologia
7.
Front Genet ; 9: 513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564267

RESUMO

Humans show sex differences related to alcohol use disorders (AUD). Animal model research has the potential to provide important insight into how sex differences affect alcohol consumption, particularly because female animals frequently drink more than males. In previous work, inbred strains of the selectively bred alcohol-preferring (P) and non-preferring (NP) rat lines revealed a highly significant quantitative trait locus (QTL) on rat chromosome 4, with a logarithm of the odds score of 9.2 for alcohol consumption. Recently, interval-specific congenic strains (ISCS) were developed by backcrossing the congenic P.NP line to inbred P (iP) rats to further refine the chromosome 4 QTL region. Two ISCS sub-strains, ISCS-A and ISCS-B, were obtained with a narrowed QTL, where the smallest region of overlap consisted of 8.9 Mb in ISCS-B. Interestingly, we found that females from both ISCS lines consumed significantly less alcohol than female iP controls (p < 0.05), while no differences in alcohol consumption were observed between male ISCS and iP controls. RNA-sequencing was performed on the nucleus accumbens of alcohol-naïve female ISCS-B and iP rats, which revealed differentially expressed genes (DEG) with greater than 2-fold change and that were functionally relevant to behavior. These DEGs included down-regulation of Oxt, Asb4, Gabre, Gabrq, Chat, Slc5a7, Slc18a8, Slc10a4, and Ngfr, and up-regulation of Ttr, Msln, Mpzl2, Wnt6, Slc17a7, Aldh1a2, and Gstm2. Pathway analysis identified significant alterations in gene networks controlling nervous system development and function, as well as cell signaling, GABA and serotonin receptor signaling and G-protein coupled receptor signaling. In addition, ß-estradiol was identified as the most significant upstream regulator. The expression levels of estrogen-responsive genes that mapped to the QTL interval and have been previously associated with alcohol consumption were measured using RT-qPCR. We found that expression of the Adcyap1r1 gene, encoding the pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor, was upregulated in female ISCS-B compared to female iP controls, while no differences were exhibited in males. In addition, sequence variants in the Adcyap1r1 promoter region showed a differential response to estrogen stimulation in vitro. These findings demonstrate that rat chromosome 4 QTL contains genetic variants that respond to estrogen and are associated with female alcohol consumption.

8.
Neural Regen Res ; 9(4): 377-384, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24999352

RESUMO

Glial cells in the central nervous system (CNS) contribute to formation of the extracellular matrix, which provides adhesive sites, signaling molecules, and a diffusion barrier to enhance efficient neurotransmission and axon potential propagation. In the normal adult CNS the extracellular matrix (ECM) is relatively stable except in select regions characterized by dynamic remodeling. However, after trauma such as a spinal cord injury or cortical contusion, the lesion epicenter becomes a focus of acute neuroinflammation. The activation of the surrounding glial cells leads to a dramatic change in the composition of the ECM at the edges of the lesion, creating a perilesion environment dominated by growth inhibitory molecules and restoration of the peripheral/central nervous system border. An advantage of this response is to limit the invasion of damaging cells and diffusion of toxic molecules into the spared tissue regions, but this occurs at the cost of inhibiting migration of endogenous repair cells and preventing axonal regrowth. The following review will highlight structural and functional features of the normal adult CNS ECM and then focus on the reactions of glial cells and changes in the perilesion border that occur following spinal cord or contusive brain injury. Current research strategies directed at modifying the inhibitory perilesion microenvironment without eliminating the protective functions of glial cell activation are discussed.

9.
Cancer Microenviron ; 4(1): 115-26, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21505566

RESUMO

Matrikines are important components of tumor microenvironments that integrate communication between extracellular matricies and membrane-bound receptors thereby regulating cellular behaviors. One such matrikine that is differentially expressed in cancer microenvironments is the extracellular matrix protein lumican; however its precise role in cancer remains ambiguous. To study the effects of lumican on cancer cells, we created lumican-overexpressing cell lines from murine fibrosarcoma (MCA102) and pancreatic adenocarcinoma (Pan02) cells. Lumican overexpression in Pan02 cells increased invasiveness, decreased soft agar colony size, and increased proliferation. Conversely in MCA102 cells, lumican decreased invasiveness, increased soft agar colony size, but did not influence proliferation. In contrast to these pleiotropic in vitro results, lumican overexpression within the in vivo tumor microenvironment produced uniformly smaller tumors. Importantly, reduced tumor size was correlated with reduced vascular density. Consistent with lumican's proposed anti-angiogenic activity, lumican increased endothelial cell apoptosis. Importantly, lumican was previously shown to influence Fas expression and our results show that lumican enhanced Fas mediated endothelial cell apoptosis although we were unable to detect any difference in Fas or Fas ligand expression between lumican-overexpressing and control cells. Interestingly, lumican had no effect on MCA102 apoptosis, suggesting that the observed reduction in tumor size is specifically due to endothelial cell apoptosis rather than a direct effect on the cancerous cells themselves. Therefore, this study is the first to demonstrate a causal relationship between tumor reduction and lumican's effect on angiogenesis as opposed to an effect on the cancerous cells themselves.

10.
Hum Factors ; 46(2): 288-303, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15359678

RESUMO

The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.


Assuntos
Análise e Desempenho de Tarefas , Interface Usuário-Computador , Percepção Auditiva , Humanos , Sistemas Homem-Máquina , Militares , Modelos Psicológicos , Processamento de Linguagem Natural , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...