Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Affect Disord ; 365: 359-363, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154984

RESUMO

BACKGROUND: Although there are a few first-line treatment options for bipolar depression, none are rapid-acting. A new rTMS protocol, Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT®), has been shown to have a rapid antidepressant effect in major depressive disorder (MDD). We examined the preliminary safety, tolerability, and efficacy of SAINT for the treatment of depression in a small sample of persons with treatment-resistant bipolar I disorder. METHODS: Participants with treatment-resistant bipolar I disorder currently experiencing moderate to severe depression were treated with open-label SAINT. Resting-state functional MRI (fMRI) was used to generate individualized treatment targets for each participant based on the region of the left dorsolateral prefrontal cortex most anticorrelated with the subgenual anterior cingulate cortex. Participants were treated with 10 iTBS sessions daily, with 50-min intersession intervals, for up to 5 consecutive days. The primary outcome was change in Montgomery-Åsberg Depression Rating Scale (MADRS) from baseline to immediate follow-up after treatment. RESULTS: We treated 10 participants and found a mean reduction of 16.9 in MADRS scores, with a 50 % response rate and 40 % remission rate immediately following treatment. 60 % of participants met remission criteria within the 1-month period following treatment. No serious adverse events, manic episodes, or cognitive side effects were observed. LIMITATIONS: Our study has a limited sample size and larger samples are needed to confirm safety and efficacy. CONCLUSIONS: SAINT has shown preliminary feasibility, safety, tolerability, and efficacy in treating treatment-resistant bipolar I depression. Double-blinded sham-controlled trials with larger samples are needed to confirm safety and efficacy.

2.
Npj Ment Health Res ; 3(1): 35, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971869

RESUMO

SNT is a high-dose accelerated intermittent theta-burst stimulation (iTBS) protocol coupled with functional-connectivity-guided targeting that is an efficacious and rapid-acting therapy for treatment-resistant depression (TRD). We used resting-state functional MRI (fMRI) data from a double-blinded sham-controlled randomized controlled trial1 to reveal the neural correlates of SNT-based symptom improvement. Neurobehavioral data were acquired at baseline, post-treatment, and 1-month follow-up. Our primary analytic objective was to investigate changes in seed-based functional connectivity (FC) following SNT and hypothesized that FC changes between the treatment target and the sgACC, DMN, and CEN would ensue following active SNT but not sham. We also investigated the durability of post-treatment observed FC changes at a 1-month follow-up. Study participants included transcranial magnetic stimulation (TMS)-naive adults with a primary diagnosis of moderate-to-severe TRD. Fifty-four participants were screened, 32 were randomized, and 29 received active or sham SNT. An additional 5 participants were excluded due to imaging artifacts, resulting in 12 participants per group (Sham: 5F; SNT: 5F). Although we did not observe any significant group × time effects on the FC between the individualized stimulation target (L-DLPFC) and the CEN or sgACC, we report an increased magnitude of negative FC between the target site and the DMN post-treatment in the active as compared to sham SNT group. This change in FC was sustained at the 1-month follow-up. Further, the degree of change in FC was correlated with improvements in depressive symptoms. Our results provide initial evidence for the putative changes in the functional organization of the brain post-SNT.

3.
Clin Neurophysiol ; 165: 76-87, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968909

RESUMO

Treatment-resistant depression (TRD) is an epidemic with rising social, economic, and political costs. In a patient whose major depressive episode (MDE) persists through an adequate antidepressant trial, insurance companies often cover alternative treatments which may include repetitive transcranial magnetic stimulation (rTMS). RTMS is an FDA-cleared neuromodulation technique for TRD which is safe, efficacious, noninvasive, and well-tolerated. Recent developments in the optimization of rTMS algorithms and targeting have increased the efficacy of rTMS in treating depression, improved the clinical convenience of these treatments, and decreased the cost of a course of rTMS. In this opinion paper, we make a case for why conventional FDA-cleared rTMS should be considered as a first-line treatment for all adult MDEs. RTMS is compared to other first-line treatments including psychotherapy and SSRIs. These observations suggest that rTMS has similar efficacy, fewer side-effects, lower risk of serious adverse events, comparable compliance, the potential for more rapid relief, and cost-effectiveness. This suggestion, however, would be strengthened by further research with an emphasis on treatment-naive subjects in their first depressive episode, and trials directly contrasting rTMS with SSRIs or psychotherapy.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Transtorno Depressivo Maior/terapia , Adulto , Transtorno Depressivo Resistente a Tratamento/terapia , Resultado do Tratamento
4.
Mol Psychiatry ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844532

RESUMO

In clinical practice, theta burst stimulation (TBS) presents as a more efficient and potentially more effective therapeutic modality than conventional repetitive transcranial magnetic stimulation (rTMS), as it allows for the delivery of more stimuli in less time and at similar intensities. To date, accelerated treatment plans according to various continuous (cTBS) and intermittent TBS (iTBS) protocols for depression have been proposed. To investigate which of the TBS protocols provided a favorable risk-benefit balance for individuals with depression, this systematic review and random-effects model network meta-analysis was conducted. The study outcomes included response rate (primary), depression symptom improvement, remission rate, all-cause discontinuation rate, incidence of switch to mania, and incidence of headache/discomfort at treatment site. In this meta-analysis, a total of 23 randomized controlled trials (n = 960, mean age = 41.88 years, with 60.78% females) were included. Approximately 69.57% of the trials included individuals with an exclusive diagnosis of major depressive disorder. The following six TBS protocols (target) were evaluated: cTBS (right-dorsolateral prefrontal cortex [R-DLPFC]), cTBS (R-DLPFC) + iTBS (left-DLPFC [L-DLPFC]), iTBS (L-DLPFC), iTBS (L-DLPFC) + iTBS (R-DLPFC), iTBS (left-dorsomedial prefrontal cortex) + iTBS (right-dorsomedial prefrontal cortex), and iTBS (occipital lobe). Compared to sham, cTBS (R-DLPFC) + iTBS (L-DLPFC), iTBS (L-DLPFC), and iTBS (occipital lobe) had a higher response rate (k = 23); cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) dominated in the depression symptom improvement (k = 23); and iTBS (L-DLPFC) had a higher remission rate (k = 15). No significant differences were found for all-cause discontinuation rate (k = 17), incidence of switch to mania (k = 7), and incidence of headache/discomfort at treatment site (k = 10) between any TBS protocols and sham. Thus, cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) demonstrate favorable risk-benefit balance for the treatment of depression.

5.
Curr Top Behav Neurosci ; 66: 233-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38844713

RESUMO

Transcranial magnetic stimulation (TMS) is entering increasingly widespread use in treating depression. The most common stimulation target, in the dorsolateral prefrontal cortex (DLPFC), emerged from early neuroimaging studies in depression. Recently, more rigorous casual methods have revealed whole-brain target networks and anti-networks based on the effects of focal brain lesions and focal brain stimulation on depression symptoms. Symptom improvement during therapeutic DLPFC-TMS appears to involve directional changes in signaling between the DLPFC, subgenual and dorsal anterior cingulate cortex, and salience-network regions. However, different networks may be involved in the therapeutic mechanisms for other TMS targets in depression, such as dorsomedial prefrontal cortex or orbitofrontal cortex. The durability of therapeutic effects for TMS involves synaptic neuroplasticity, and specifically may depend upon dopamine acting at the D1 receptor family, as well as NMDA-receptor-dependent synaptic plasticity mechanisms. Although TMS protocols are classically considered 'excitatory' or 'inhibitory', the actual effects in individuals appear quite variable, and might be better understood at the level of populations of synapses rather than individual synapses. Synaptic meta-plasticity may provide a built-in protective mechanism to avoid runaway facilitation or inhibition during treatment, and may account for the relatively small number of patients who worsen rather than improve with TMS. From an ethological perspective, the antidepressant effects of TMS may involve promoting a whole-brain attractor state associated with foraging/hunting behaviors, centered on the rostrolateral periaqueductal gray and salience network, and suppressing an attractor state associated with passive threat defense, centered on the ventrolateral periaqueductal gray and default-mode network.


Assuntos
Plasticidade Neuronal , Estimulação Magnética Transcraniana , Estimulação Magnética Transcraniana/métodos , Humanos , Plasticidade Neuronal/fisiologia , Depressão/terapia , Depressão/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Encéfalo/fisiopatologia
7.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775157

RESUMO

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfócitos T , Microambiente Tumoral , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Proliferação de Células/efeitos dos fármacos , Proteínas que Contêm Bromodomínio , Proteínas
9.
Mol Psychiatry ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532009

RESUMO

Transcranial magnetic stimulation (TMS) applied to a left dorsolateral prefrontal cortex (DLPFC) area with a specific connectivity profile to the subgenual anterior cingulate cortex (sgACC) has emerged as a highly effective non-invasive treatment option for depression. However, antidepressant outcomes demonstrate significant variability among therapy plans and individuals. One overlooked contributing factor is the individual brain state at the time of treatment. In this study we used interleaved TMS-fMRI to investigate the influence of brain state on acute TMS effects, both locally and remotely. TMS was performed during rest and during different phases of cognitive task processing. Twenty healthy participants were included in this study. In the first session, imaging data for TMS targeting were acquired, allowing for identification of individualized targets in the left DLPFC based on highest anti-correlation with the sgACC. The second session involved chronometric interleaved TMS-fMRI measurements, with 10 Hz triplets of TMS administered during rest and at distinct timings during an N-back task. Consistent with prior findings, interleaved TMS-fMRI revealed significant BOLD activation changes in the targeted network. The precise timing of TMS relative to the cognitive states during the task demonstrated distinct BOLD response in clinically relevant brain regions, including the sgACC. Employing a standardized timing approach for TMS using a task revealed more consistent modulation of the sgACC at the group level compared to stimulation during rest. In conclusion, our findings strongly suggest that acute local and remote effects of TMS are influenced by brain state during stimulation. This study establishes a basis for considering brain state as a significant factor in designing treatment protocols, possibly improving TMS treatment outcomes.

10.
Biol Psychiatry ; 95(6): 523-535, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38383091

RESUMO

Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can be used to modulate neural networks underlying psychiatric and neurological disorders. TBS can be delivered intermittently or continuously. The conventional intermittent TBS protocol is approved by the U.S. Food and Drug Administration to treat otherwise treatment-resistant depression, but the 6-week duration limits the applicability of this therapy. Accelerated TBS protocols present an opportunity to deliver higher pulse doses in shorter periods of time, thus resulting in faster and potentially more clinically effective treatment. However, the acceleration of TBS delivery raises questions regarding the relative safety, efficacy, and durability compared with conventional TBS protocols. In this review paper, we present the data from accelerated TBS trials to date that support the safety and effectiveness of accelerated protocols while acknowledging the need for more durability data. We discuss the stimulation parameters that seem to be important for the efficacy of accelerated TBS protocols and possible avenues for further optimization.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Encéfalo , Transtorno Depressivo Resistente a Tratamento/terapia , Ritmo Teta/fisiologia
12.
Nat Med ; 30(2): 373-381, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182784

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability. Sequelae can include functional impairments and psychiatric syndromes such as post-traumatic stress disorder (PTSD), depression and anxiety. Special Operations Forces (SOF) veterans (SOVs) may be at an elevated risk for these complications, leading some to seek underexplored treatment alternatives such as the oneirogen ibogaine, a plant-derived compound known to interact with multiple neurotransmitter systems that has been studied primarily as a treatment for substance use disorders. Ibogaine has been associated with instances of fatal cardiac arrhythmia, but coadministration of magnesium may mitigate this concern. In the present study, we report a prospective observational study of the Magnesium-Ibogaine: the Stanford Traumatic Injury to the CNS protocol (MISTIC), provided together with complementary treatment modalities, in 30 male SOVs with predominantly mild TBI. We assessed changes in the World Health Organization Disability Assessment Schedule from baseline to immediately (primary outcome) and 1 month (secondary outcome) after treatment. Additional secondary outcomes included changes in PTSD (Clinician-Administered PTSD Scale for DSM-5), depression (Montgomery-Åsberg Depression Rating Scale) and anxiety (Hamilton Anxiety Rating Scale). MISTIC resulted in significant improvements in functioning both immediately (Pcorrected < 0.001, Cohen's d = 0.74) and 1 month (Pcorrected < 0.001, d = 2.20) after treatment and in PTSD (Pcorrected < 0.001, d = 2.54), depression (Pcorrected < 0.001, d = 2.80) and anxiety (Pcorrected < 0.001, d = 2.13) at 1 month after treatment. There were no unexpected or serious adverse events. Controlled clinical trials to assess safety and efficacy are needed to validate these initial open-label findings. ClinicalTrials.gov registration: NCT04313712 .


Assuntos
Lesões Encefálicas Traumáticas , Ibogaína , Veteranos , Humanos , Veteranos/psicologia , Magnésio/uso terapêutico , Resultado do Tratamento , Lesões Encefálicas Traumáticas/tratamento farmacológico
14.
Neuron ; 112(1): 73-83.e4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37865084

RESUMO

Treatment-resistant obsessive-compulsive disorder (OCD) occurs in approximately one-third of OCD patients. Obsessions may fluctuate over time but often occur or worsen in the presence of internal (emotional state and thoughts) and external (visual and tactile) triggering stimuli. Obsessive thoughts and related compulsive urges fluctuate (are episodic) and so may respond well to a time-locked brain stimulation strategy sensitive and responsive to these symptom fluctuations. Early evidence suggests that neural activity can be captured from ventral striatal regions implicated in OCD to guide such a closed-loop approach. Here, we report on a first-in-human application of responsive deep brain stimulation (rDBS) of the ventral striatum for a treatment-refractory OCD individual who also had comorbid epilepsy. Self-reported obsessive symptoms and provoked OCD-related distress correlated with ventral striatal electrophysiology. rDBS detected the time-domain area-based feature from invasive electroencephalography low-frequency oscillatory power fluctuations that triggered bursts of stimulation to ameliorate OCD symptoms in a closed-loop fashion. rDBS provided rapid, robust, and durable improvement in obsessions and compulsions. These results provide proof of concept for a personalized, physiologically guided DBS strategy for OCD.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Estriado Ventral , Humanos , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Transtorno Obsessivo-Compulsivo/terapia , Comportamento Obsessivo
15.
Drug Alcohol Depend ; 254: 111035, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043228

RESUMO

BACKGROUND: Cannabis use disorder (CUD) is a common and consequential disorder. When applied to the dorsolateral prefrontal cortex (DLPFC), repetitive transcranial magnetic stimulation (rTMS) reduces craving across substance use disorders and may have therapeutic clinical effects when applied in serial-sessions. The present study sought to preliminarily determine whether serial-sessions of rTMS applied to the DLPFC had a therapeutic effect in CUD. METHODS: This study was a two-site, phase-2, double-blind, randomized-controlled-trial. Seventy-two treatment-seeking participants (37.5% Women, mean age 30.2±9.9SD) with ≥moderate-CUD were randomized to active or sham rTMS (Beam-F3, 10Hz, 20-total-sessions, two-sessions-per-visit, two-visits-per-week, with cannabis cues) while undergoing a three-session motivational enhancement therapy intervention. The primary outcome was the change in craving between pre- and post- treatment (Marijuana Craving Questionnaire Short-Form-MCQ-SF). Secondary outcomes included the number of weeks of abstinence and the number of days-per-week of cannabis use during 4-weeks of follow-up. RESULTS: There were no significant differences in craving between conditions. Participants who received active-rTMS reported numerically, but not significantly, more weeks of abstinence in the follow-up period than those who received sham-rTMS (15.5%-Active; 9.3%-Sham; rate ratio = 1.66 [95% CI: 0.84, 3.28]; p=0.14). Participants who received active-rTMS reported fewer days-per-week of cannabis use over the final two-weeks of the follow-up period than those receiving sham-rTMS (Active vs. Sham: -0.72; Z=-2.33, p=0.02). CONCLUSIONS: This trial suggests rTMS is safe and feasible in individuals with CUD and may have a therapeutic effect on frequency of cannabis use, though further study is needed with additional rTMS-sessions and a longer follow-up period.


Assuntos
Abuso de Maconha , Transtornos Relacionados ao Uso de Substâncias , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Estimulação Magnética Transcraniana , Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal/fisiologia , Método Duplo-Cego , Abuso de Maconha/terapia , Resultado do Tratamento
16.
Neuroimage ; 282: 120394, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805020

RESUMO

BACKGROUND: TMS is a valuable tool in both research and clinical settings, playing a crucial role in understanding brain-behavior relationships and providing treatment for various neurological and psychiatric conditions. Importantly, TMS over left DLPFC is an FDA approved treatment for MDD. Despite its potential, response variability to TMS remains a challenge, with stimulation parameters, particularly the stimulation intensity, being a primary contributor to these differences. OBJECTIVE: The objective of this study was to establish dose-response relationships of TMS stimulation in DLPFC by means of concurrent TMS/fMRI. METHODS: Here, we stimulated 15 subjects at different stimulation intensities of 80, 90, 100 and 110 % relative to the motor threshold during concurrent TMS/fMRI. The experiment comprised two sessions: one session to collect anatomical data in order to perform neuronavigation and one session dedicated to dose-response mapping. We calculated GLMs for each intensity level and each subject, as well as at a group-level per intensity. RESULTS: On a group level, we show that the strongest BOLD-response was at 100 % stimulation. However, investigating individual dose response-relationships showed differences in response patterns across the group: subjects that responded to subthreshold stimulation, subjects that required above threshold stimulation in order to show a significant BOLD-response and atypical responders. CONCLUSIONS: We observed qualitative inter-subject variability in terms of dose-response relationship to TMS over left DLPFC, which hints towards the motor threshold not being directly transferable to the excitability of the DLPFC. Concurrent TMS/fMRI might have the potential to improve response rates to rTMS applications. As such, it may be valuable in the future to consider implementing this approach prior to clinical TMS or validating more cost-effective methods to determine dose and target with respect to changes in clinical symptoms.


Assuntos
Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal/fisiologia
17.
Biol Psychiatry Glob Open Sci ; 3(4): 939-947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881544

RESUMO

Background: Neurocardiac-guided transcranial magnetic stimulation (TMS) uses repetitive TMS (rTMS)-induced heart rate deceleration to confirm activation of the frontal-vagal pathway. Here, we test a novel neurocardiac-guided TMS method that utilizes heart-brain coupling (HBC) to quantify rTMS-induced entrainment of the interbeat interval as a function of TMS cycle time. Because prior neurocardiac-guided TMS studies indicated no association between motor and frontal excitability threshold, we also introduce the approach of using HBC to establish individualized frontal excitability thresholds for optimally dosing frontal TMS. Methods: In studies 1A and 1B, we validated intermittent theta burst stimulation (iTBS)-induced HBC (2 seconds iTBS on; 8 seconds off: HBC = 0.1 Hz) in 15 (1A) and 22 (1B) patients with major depressive disorder from 2 double-blind placebo-controlled studies. In study 2, HBC was measured in 10 healthy subjects during the 10-Hz "Dash" protocol (5 seconds 10-Hz on; 11 seconds off: HBC = 0.0625 Hz) applied with 15 increasing intensities to 4 evidence-based TMS locations. Results: Using blinded electrocardiogram-based HBC analysis, we successfully identified sham from real iTBS sessions (accuracy: study 1A = 83%, study 1B = 89.5%) and found a significantly stronger HBC at 0.1 Hz in active compared with sham iTBS (d = 1.37) (study 1A). In study 2, clear dose-dependent entrainment (p = .002) was observed at 0.0625 Hz in a site-specific manner. Conclusions: We demonstrated rTMS-induced HBC as a function of TMS cycle time for 2 commonly used clinical protocols (iTBS and 10-Hz Dash). These preliminary results supported individual site specificity and dose-response effects, indicating that this is a potentially valuable method for clinical rTMS site stratification and frontal thresholding. Further research should control for TMS side effects, such as pain of stimulation, to confirm these findings.

18.
World Psychiatry ; 22(3): 394-412, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713549

RESUMO

Treatment-resistant depression (TRD) is common and associated with multiple serious public health implications. A consensus definition of TRD with demonstrated predictive utility in terms of clinical decision-making and health outcomes does not currently exist. Instead, a plethora of definitions have been proposed, which vary significantly in their conceptual framework. The absence of a consensus definition hampers precise estimates of the prevalence of TRD, and also belies efforts to identify risk factors, prevention opportunities, and effective interventions. In addition, it results in heterogeneity in clinical practice decision-making, adversely affecting quality of care. The US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have adopted the most used definition of TRD (i.e., inadequate response to a minimum of two antidepressants despite adequacy of the treatment trial and adherence to treatment). It is currently estimated that at least 30% of persons with depression meet this definition. A significant percentage of persons with TRD are actually pseudo-resistant (e.g., due to inadequacy of treatment trials or non-adherence to treatment). Although multiple sociodemographic, clinical, treatment and contextual factors are known to negatively moderate response in persons with depression, very few factors are regarded as predictive of non-response across multiple modalities of treatment. Intravenous ketamine and intranasal esketamine (co-administered with an antidepressant) are established as efficacious in the management of TRD. Some second-generation antipsychotics (e.g., aripiprazole, brexpiprazole, cariprazine, quetiapine XR) are proven effective as adjunctive treatments to antidepressants in partial responders, but only the olanzapine-fluoxetine combination has been studied in FDA-defined TRD. Repetitive transcranial magnetic stimulation (TMS) is established as effective and FDA-approved for individuals with TRD, with accelerated theta-burst TMS also recently showing efficacy. Electroconvulsive therapy is regarded as an effective acute and maintenance intervention in TRD, with preliminary evidence suggesting non-inferiority to acute intravenous ketamine. Evidence for extending antidepressant trial, medication switching and combining antidepressants is mixed. Manual-based psychotherapies are not established as efficacious on their own in TRD, but offer significant symptomatic relief when added to conventional antidepressants. Digital therapeutics are under study and represent a potential future clinical vista in this population.

19.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645792

RESUMO

Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.

20.
medRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503294

RESUMO

Background: Cannabis use disorder (CUD) is a common and consequential disorder. When applied to the dorsolateral prefrontal cortex (DLPFC), repetitive transcranial magnetic stimulation (rTMS) reduces craving across substance use disorders and may have a therapeutic clinical effect when applied in serial sessions. The present study sought to preliminarily determine whether serial sessions of rTMS applied to the DLPFC had a therapeutic effect in CUD. Methods: This study was a two-site, phase-2, double-blind, randomized-controlled-trial. Seventy-two treatment-seeking participants (37.5% Women, mean age 30.2±9.9SD) with ≥moderate-CUD were randomized to active or sham rTMS (Beam-F3, 10Hz, 20-total-sessions, with cannabis cues) while undergoing a three-session motivational enhancement therapy intervention. The primary outcome was the change in craving between pre- and post-treatment (Marijuana Craving Questionnaire Short-Form-MCQ-SF). Secondary outcomes included the number of weeks of abstinence and the number of days-per-week of cannabis use during 4-weeks of follow-up. Results: There were no significant differences in craving between conditions. Participants who received active rTMS reported numerically, but not significantly, more weeks of abstinence in the follow-up period than those who received sham rTMS (15.5%-Active; 9.3%-Sham; rate ratio = 1.66 [95% CI: 0.84, 3.28]; p=0.14). Participants who received active rTMS reported fewer days-per-week of cannabis use over the final two-weeks of the follow-up period (Active vs. Sham: -0.72; Z=-2.33, p=0.02). Conclusions: This trial suggests rTMS is safe and feasible in individuals with CUD and may have a therapeutic effect on frequency of cannabis use, though further study is needed with additional rTMS-sessions and a longer follow-up period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...