Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(44): 24175-24183, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888947

RESUMO

The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant ß-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.

2.
J Am Chem Soc ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014945

RESUMO

While the oxidative addition of Ni(I) to aryl iodides has been commonly proposed in catalytic methods, an in-depth mechanistic understanding of this fundamental process is still lacking. Herein, we describe a detailed mechanistic study of the oxidative addition process using electroanalytical and statistical modeling techniques. Electroanalytical techniques allowed rapid measurement of the oxidative addition rates for a diverse set of aryl iodide substrates and four classes of catalytically relevant complexes (Ni(MeBPy), Ni(MePhen), Ni(Terpy), and Ni(BPP)). With >200 experimental rate measurements, we were able to identify essential electronic and steric factors impacting the rate of oxidative addition through multivariate linear regression models. This has led to a classification of oxidative addition mechanisms, either through a three-center concerted or halogen-atom abstraction pathway based on the ligand type. A global heat map of predicted oxidative addition rates was created and shown applicable to a better understanding of the reaction outcome in a case study of a Ni-catalyzed coupling reaction.

3.
J Am Chem Soc ; 144(12): 5575-5582, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298885

RESUMO

The oxidative addition of aryl halides to bipyridine- or phenanthroline-ligated nickel(I) is a commonly proposed step in nickel catalysis. However, there is a scarcity of complexes of this type that both are well-defined and undergo oxidative addition with aryl halides, hampering organometallic studies of this process. We report the synthesis of a well-defined Ni(I) complex, [(CO2Etbpy)NiICl]4 (1). Its solution-phase speciation is characterized by a significant population of monomer and a redox equilibrium that can be perturbed by π-acceptors and σ-donors. 1 reacts readily with aryl bromides, and mechanistic studies are consistent with a pathway proceeding through an initial Ni(I) → Ni(III) oxidative addition to form a Ni(III) aryl species. Such a process was demonstrated stoichiometrically for the first time, affording a structurally characterized Ni(III) aryl complex.


Assuntos
Compostos Heterocíclicos , Níquel , Catálise , Estrutura Molecular , Oxirredução , Estresse Oxidativo
4.
ACS Cent Sci ; 7(10): 1622-1637, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34729406

RESUMO

Organic chemistry is replete with complex relationships: for example, how a reactant's structure relates to the resulting product formed; how reaction conditions relate to yield; how a catalyst's structure relates to enantioselectivity. Questions like these are at the foundation of understanding reactivity and developing novel and improved reactions. An approach to probing these questions that is both longstanding and contemporary is data-driven modeling. Here, we provide a synopsis of the history of data-driven modeling in organic chemistry and the terms used to describe these endeavors. We include a timeline of the steps that led to its current state. The case studies included highlight how, as a community, we have advanced physical organic chemistry tools with the aid of computers and data to augment the intuition of expert chemists and to facilitate the prediction of structure-activity and structure-property relationships.

5.
J Am Chem Soc ; 142(19): 8928-8937, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32348673

RESUMO

We previously reported the development of an electron-deficient olefin (EDO) ligand, Fro-DO, that promotes the generation of quaternary carbon centers via Ni-catalyzed Csp3-Csp3 cross-coupling with aziridines. By contrast, electronically and structurally similar EDO ligands such as dimethyl fumarate and electron-deficient styrenes afford primarily ß-hydride elimination side reactivity. Only a few catalyst systems have been identified that promote the formation of quaternary carbons via Ni-catalyzed Csp3-Csp3 cross-coupling. Although Fro-DO represents a promising ligand in this regard, the basis for its superior performance is not well understood. Here we describe a detailed mechanistic study of the aziridine cross-coupling reaction and the role of EDO ligands in facilitating Csp3-Csp3 bond formation. This analysis reveals that cross-coupling proceeds by a Ni0/II cycle with a NiII azametallacyclobutane catalyst resting state. Turnover-limiting C-C reductive elimination occurs from a spectroscopically observable NiII-dialkyl intermediate bound to the EDO. Computational analysis shows that Fro-DO accelerates turnover limiting reductive elimination via LUMO lowering. However, it is no more effective than dimethyl fumarate at reducing the barrier to Csp3-Csp3 reductive elimination. Instead, Fro-DO's unique reactivity arises from its ability to associate favorably to NiII intermediates. Natural bond order second-order perturbation theory analysis of the catalytically relevant NiII intermediate indicates that Fro-DO binds to NiII through an additional stabilizing donor-acceptor interaction between its sulfonyl group and NiII. Design of new ligands to evaluate this proposal supports this model and has led to the development of a new and tunable ligand framework.


Assuntos
Alcenos/química , Aziridinas/química , Carbono/química , Níquel/química , Catálise , Teoria da Densidade Funcional , Elétrons , Cinética , Ligantes , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...