Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-26651737

RESUMO

We simulate a phase-separating bilayer in which the leaflets experience a direct coupling favoring local compositional symmetry ("registered" bilayer phases), and an indirect coupling due to hydrophobic mismatch that favors strong local asymmetry ("antiregistered" bilayer phases). For wide ranges of overall leaflet compositions, multiple competing states are possible. For estimated physical parameters, a quenched bilayer may first evolve toward a metastable state more asymmetric than if the leaflets were uncorrelated; subsequently, it must nucleate to reach its equilibrium, more symmetric, state. These phase-transition kinetics exhibit characteristic signatures through which fundamental and opposing interleaflet interactions may be probed. We emphasize how bilayer phase diagrams with a separate axis for each leaflet can account for overall and local symmetry or asymmetry, and capture a range of observations in the experiment and simulation literature.

3.
Soft Matter ; 11(46): 8948-59, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26412192

RESUMO

We study the kinetics governing the attainment of inter-leaflet domain symmetry in a phase-separating amphiphilic bilayer. "Indirect" inter-leaflet coupling via hydrophobic mismatch can induce an instability towards a metastable pattern of locally asymmetric domains upon quenching from high temperature. This necessitates a nucleation step to form the conventional symmetric domains, which are favoured by a "direct" inter-leaflet coupling. We model the energetics for a symmetric domain to nucleate from the metastable state, and find that an interplay between hydrophobic mismatch and thickness stretching/compression causes the effective hydrophobic mismatch, and thus line tension, to depend on domain size. This leads to strong departure from classical nucleation theory. We speculate on implications for cell membrane rafts or clusters, whose size may be of similar magnitude to estimated critical radii for domain symmetry.

4.
J Chem Phys ; 141(16): 164901, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362335

RESUMO

We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ~40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size and polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011405, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005415

RESUMO

Using kinetic Monte Carlo simulation, we model gas-liquid spinodal decomposition in a size-polydisperse square well fluid, representing a "near-monodisperse" colloidal dispersion. We find that fractionation (demixing) of particle sizes between the phases begins asserting itself shortly after the onset of phase ordering. Strikingly, the direction of size fractionation can be reversed by a seemingly trivial choice between two interparticle potentials which, in the monodisperse case, are identical--we rationalize this in terms of a perturbative, equilibrium theory of polydispersity. Furthermore, our quantitative results show that kinetic Monte Carlo simulation can provide detailed insight into the role of fractionation in real colloidal systems.


Assuntos
Coloides/química , Gases/química , Modelos Químicos , Modelos Moleculares , Reologia/métodos , Simulação por Computador , Modelos Estatísticos , Método de Monte Carlo , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...