Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Med Insights Cardiol ; 18: 11795468231221413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449712

RESUMO

Supra-aortic extra-anatomic debranch (SAD) are prosthetic surgical grafts used to revascularize head and neck arteries that would be blocked during a surgical or hybrid procedure used in treating ascending and arch of the aorta pathologies. However, bypassing the supra-aortic arteries but not occluding their orifice might introduce potential for competitive flow that reduces bypass patency. Competitive flow within the bypasses across the supra-aortic arteries has not previously been identified. This research identified haemodynamics due to prophylactic inclusion of bypasses from the brachiocephalic artery (BCA) to the left common carotid artery (LCCA), and from the LCCA to left subclavian artery (LSA). Four model configurations investigated the risk of competitive flow and the necessity of intentionally blocking the proximal LSA and/or LCCA. Particle image velocimetry (PIV) was used to assess haemodynamics in each model configuration. We found potential for competitive flow in the BCA-LCCA bypass when the LSA was blocked, in the LSA-LCCA bypass, when the LCCA alone or LCCA and LSA were blocked. Flow stagnated at the start of systole within the RCCA-LCCA bypass, along with notable recirculation zones and reciprocating flow occurring throughout systolic flow. Flow also stagnated in the LCCA-LSA bypass when the LCCA was blocked. There was a large recirculation in the LCCA-LSA bypass when both the LCCA and LSA were blocked. The presence of competitive flow in all other configurations indicated that it is necessary to block or ligate the native LCCA and LSA once the debranch is made and the thoracic endovascular aortic repair (TEVAR) completed.

2.
J Endovasc Ther ; : 15266028221141024, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458819

RESUMO

PURPOSE: The kissing stent (KS) method is low-risk compared with open surgery techniques. It is often used to treat aorto-iliac occlusive disease (AIOD). Deployment of the KS geometry has a high technical success rate. However, stent patency reduces in the first 5 years potentially due to deleterious flow behavior. Potentially harmful hemodynamics due to the KS were investigated in vitro. METHODOLOGY: A compliant phantom of the aorto-iliac bifurcation was manufactured. Two surrogate stent-grafts were deployed into the phantom in the KS configuration to investigate effects of the presence of the stents, including the compliance mismatch they cause, on the hemodynamics proximal and distal to the KS. The investigation used pulsatile flow through a flow circuit to simulate abdominal aortic flow. Particle image velocimetry (PIV) was used to quantify the hemodynamics. RESULTS: PIV identified peak proximal and distal velocity in vitro was 0.71 and 1.40m·s-1, respectively, which were within physiological ranges. Throughout systole, flow appeared normal and undisturbed. A lumen wall collapse in the sagittal plane formed during late systole and continued to early diastole proximal to the aorto-iliac bifurcation, distal to the inlet stent position. The wall collapse led to disturbed flow proximal to the stented region in early diastole producing potential recirculation zones and abnormal flow patterns. CONCLUSION: The normal systolic flow behavior indicates the KS configuration is unlikely to cause an inflammatory response of the arterial walls. The collapse has not been previously identified and may potentially cause long-term patency reduction. It requires further investigation. CLINICAL IMPACT: The role of this article is to provide further insight into the haemodynamic behavior through a stented aorto-iliac artery. The results of this investigation will improve the understanding of the effects that using the kissing stent method may have on a patient and help to identify high risk regions that may require more detailed monitoring. This paper also develops the in vitro modelling techniques that will enable further research that cannot be carried out within patients.

3.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802061

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death in the developed world. CVD can include atherosclerosis, aneurysm, dissection, or occlusion of the main arteries. Many CVDs are caused by unhealthy hemodynamics. Some CVDs can be treated with the implantation of stents and stent grafts. Investigations have been carried out to understand the effects of stents and stent grafts have on arteries and the hemodynamic changes post-treatment. Numerous studies on stent hemodynamics have been carried out using computational fluid dynamics (CFD) which has yielded significant insight into the effect of stent mesh design on near-wall blood flow and improving hemodynamics. Particle image velocimetry (PIV) has also been used to capture behavior of fluids that mimic physiological hemodynamics. However, PIV studies have largely been restricted to unstented models or intra-aneurysmal flow rather than peri or distal stent flow behaviors. PIV has been used both as a standalone measurement method and as a comparison to validate the CFD studies. This article reviews the successes and limitations of CFD and PIV-based modeling methods used to investigate the hemodynamic effects of stents. The review includes an overview of physiology and relevant mechanics of arteries as well as consideration of boundary conditions and the working fluids used to simulate blood for each modeling method along with the benefits and limitations introduced.


Assuntos
Aterosclerose , Aneurisma Intracraniano , Artérias , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Modelos Cardiovasculares , Stents
4.
Med Eng Phys ; 96: 81-90, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565556

RESUMO

The aorta is a high risk region for cardiovascular disease (CVD). Haemodynamic patterns leading to CVD are not well established despite numerous experimental and numerical studies. Most overlook effects of arterial compliance and pulsatile flow. However, rigid wall assumptions can lead to overestimation of wall shear stress; a key CVD determinant. This work investigates the effect of compliance on aortic arch haemodynamics experiencing pulsatility. Rigid and compliant phantoms of the arch and brachiocephalic branch (BCA) were manufactured. Stereoscopic particle image velocimetry was used to observe velocity fields. Higher velocity magnitude was observed in the rigid BCA during acceleration. However, during deceleration, the compliant phantom experienced higher velocity. During deceleration, a low velocity region initiated and increased in size in the BCA of both phantoms with irregular shape in the compliant. At mid-deceleration, considerably larger recirculation was observed under compliance compared to rigid. Another recirculation region formed and increased in size on the inner wall of the arch in the compliant during late deceleration, but not rigid. The recirculation regions witnessed identify as high risk areas for atherosclerosis formation by a previous ex-vivo study. The results demonstrate necessity of compliance and pulsatility in haemodynamic studies to obtain highly relevant clinical outcomes.


Assuntos
Aorta Torácica , Aorta , Aorta Torácica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Modelos Cardiovasculares , Imagens de Fantasmas , Fluxo Pulsátil , Reologia
5.
Cardiovasc Eng Technol ; 12(4): 373-386, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33675018

RESUMO

PURPOSE: The Frozen Elephant Trunk (FET) stent is a hybrid endovascular device that may be implemented in the event of an aneurysm or aortic dissection of the aortic arch or superior descending aorta. A Type 1B endoleak can lead to intrasaccular flow during systole and has been identified as a known failure of the FET stent graft. The purpose was to develop in-vitro modelling techniques to enable the investigation of the known failure. METHODS: A silicone aortic phantom and 3D printed surrogate stent graft were manufactured to investigate the haemodynamics of a Type 1B endoleak. Physiological pulsatile flow dynamics distal to the surrogate stent graft were investigated in-vitro using Particle Image Velocimetry (PIV). RESULTS: PIV captured recirculation zones and an endoleak distal to the surrogate stent graft. The endoleak was developed at the peak of systole and sustained until the onset of diastole. The endoleak was asymmetric, indicating a potential variation in the phantom artery wall thickness or stent alignment. Recirculation was identified on the posterior dorsal line during late systole. CONCLUSIONS: The identification of the Type 1B endoleak proved that in-vitro modelling can be used to investigate complex compliance changes and wall motions. The recirculation may indicate the potential for long term intimal layer inflammatory issues such as atherosclerosis. These results may aid future remediation techniques or stent design. Further development of the methods used in this experiment may assist with the future testing of stents prior to animal or human trial.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Aorta Torácica , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Prótese Vascular , Implante de Prótese Vascular/efeitos adversos , Hemodinâmica , Humanos , Reologia , Stents , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...