Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 249(3): 851-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21853389

RESUMO

Mediating the transport of flagellar precursors and removal of turnover products, intraflagellar transport (IFT) is required for flagella assembly and maintenance. The IFT apparatus is composed of the anterograde IFT motor kinesin II, the retrograde IFT motor IFT-dynein, and IFT particles containing two complexes, A and B. In order to have a balanced two-way transportation, IFT-dynein has to be carried into flagella and transported to the flagellar tip by kinesin II, where it is activated to drive the retrograde IFT back to the flagellar base. In this study, we investigated the role of complex A and complex B in the flagellar entry and exit of IFT-dynein. We showed that regardless of the amount of complex A, IFT-dynein accumulated proportionally to the amount of complex B in the flagella of fla15/ift144 and fla17-1/ift139, two complex A temperature-sensitive mutants. Complex A was depleted from both cellular and flagellar compartments in fla15/ift144 mutant. However, in fla17-1/ift139 mutant, the flagellar level of complex A was at the wild-type level, which was in radical contrast to the significantly reduced cellular amount of complex A. These results support that complex A is not required for the flagellar entry of IFT-dynein, but might be essential for the lagellar exit of IFT-dynein. Additionally, we confirmed the essential role of IFT172, a complex B subunit, in the flagellar entry of IFT-dynein. These results indicate that complexes A and B play complementary but distinct roles for IFT-dynein, with complex B carrying IFT-dynein into the flagella while complex A mediates the flagellar exit of IFT-dynein.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteínas de Algas/genética , Transporte Biológico , Chlamydomonas reinhardtii/genética , Flagelos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação
2.
Mol Biol Cell ; 21(15): 2696-706, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20534810

RESUMO

DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/metabolismo , Flagelos/metabolismo , Proteínas de Algas/química , Sequência de Aminoácidos , Axonema/metabolismo , Axonema/ultraestrutura , Chlamydomonas/citologia , Chlamydomonas/ultraestrutura , Sequência Conservada/genética , Flagelos/ultraestrutura , Técnicas de Silenciamento de Genes , Cinesinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo
3.
PLoS One ; 4(5): e5384, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19412537

RESUMO

BACKGROUND: Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated. METHODOLOGY/PRINCIPAL FINDINGS: We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated. CONCLUSION/SIGNIFICANCE: IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Animais , Chlamydomonas/genética , Flagelos/metabolismo , Genes de Protozoários , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...