Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
4.
Neuron ; 110(17): 2867-2885.e7, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858623

RESUMO

Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.


Assuntos
Doenças do Sistema Nervoso , Estimulação do Nervo Vago , Animais , Encéfalo , Colinérgicos/farmacologia , Camundongos , Doenças do Sistema Nervoso/terapia , Plasticidade Neuronal/fisiologia , Estimulação do Nervo Vago/métodos
5.
J Neural Eng ; 18(4)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34407518

RESUMO

Objective.Closed-loop neuromodulation technology is a rapidly expanding category of therapeutics for a broad range of indications. Development of these innovative neurological devices requires high-throughput systems for closed-loop stimulation of model organisms, while monitoring physiological signals and complex, naturalistic behaviors. To address this need, we developed CLARA, a closed-loop automated reaching apparatus.Approach.Using breakthroughs in computer vision, CLARA integrates fully-automated, markerless kinematic tracking of multiple features to classify animal behavior and precisely deliver neural stimulation based on behavioral outcomes. CLARA is compatible with advanced neurophysiological tools, enabling the testing of neurostimulation devices and identification of novel neurological biomarkers.Results.The CLARA system tracks unconstrained skilled reach behavior in 3D at 150 Hz without physical markers. The system fully automates trial initiation and pellet delivery and is capable of accurately delivering stimulation in response to trial outcome with short latency. Kinematic data from the CLARA system provided novel insights into the dynamics of reach consistency over the course of learning, suggesting that learning selectively improves reach failures but does not alter the kinematics of successful reaches. Additionally, using the closed-loop capabilities of CLARA, we demonstrate that vagus nerve stimulation (VNS) improves skilled reach performance and increases reach trajectory consistency in healthy animals.Significance.The CLARA system is the first mouse behavior apparatus that uses markerless pose tracking to provide real-time closed-loop stimulation in response to the outcome of an unconstrained motor task. Additionally, we demonstrate that the CLARA system was essential for our investigating the role of closed-loop VNS stimulation on motor performance in healthy animals. This approach has high translational relevance for developing neurostimulation technology based on complex human behavior.


Assuntos
Estimulação do Nervo Vago , Animais , Comportamento Animal , Camundongos
6.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216875

RESUMO

The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Linhagem da Célula , Proteínas de Drosophila/genética , Voo Animal , Proteínas de Homeodomínio/genética , Neurotransmissores/análise
7.
Cell Rep ; 25(6): 1636-1649.e5, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404015

RESUMO

Sparse manipulation of neuron excitability during free behavior is critical for identifying neural substrates of behavior. Genetic tools for precise neuronal manipulation exist in the fruit fly, Drosophila melanogaster, but behavioral tools are still lacking to identify potentially subtle phenotypes only detectible using high-throughput and high spatiotemporal resolution. We developed three assay components that can be used modularly to study natural and optogenetically induced behaviors. FlyGate automatically releases flies one at a time into an assay. FlyDetect tracks flies in real time, is robust to severe occlusions, and can be used to track appendages, such as the head. GlobeDisplay is a spherical projection system covering the fly's visual receptive field with a single projector. We demonstrate the utility of these components in an integrated system, FlyPEZ, by comprehensively modeling the input-output function for directional looming-evoked escape takeoffs and describing a millisecond-timescale phenotype from genetic silencing of a single visual projection neuron type.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Animais , Automação , Atividade Motora/fisiologia , Neurônios/citologia , Fenótipo , Visão Ocular/fisiologia
8.
Pediatrics ; 140(5)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29066580

RESUMO

OBJECTIVES: To examine intelligence, language, and academic achievement through 18 years of age among children with congenital cytomegalovirus infection identified through hospital-based newborn screening who were asymptomatic at birth compared with uninfected infants. METHODS: We used growth curve modeling to analyze trends in IQ (full-scale, verbal, and nonverbal intelligence), receptive and expressive vocabulary, and academic achievement in math and reading. Separate models were fit for each outcome, modeling the change in overall scores with increasing age for patients with normal hearing (n = 78) or with sensorineural hearing loss (SNHL) diagnosed by 2 years of age (n = 11) and controls (n = 40). RESULTS: Patients with SNHL had full-scale intelligence and receptive vocabulary scores that were 7.0 and 13.1 points lower, respectively, compared with controls, but no significant differences were noted in these scores among patients with normal hearing and controls. No significant differences were noted in scores for verbal and nonverbal intelligence, expressive vocabulary, and academic achievement in math and reading among patients with normal hearing or with SNHL and controls. CONCLUSIONS: Infants with asymptomatic congenital cytomegalovirus infection identified through newborn screening with normal hearing by age 2 years do not appear to have differences in IQ, vocabulary or academic achievement scores during childhood, or adolescence compared with uninfected children.


Assuntos
Doenças Assintomáticas/epidemiologia , Infecções por Citomegalovirus/epidemiologia , Escolaridade , Testes de Inteligência , Inteligência , Adolescente , Adulto , Doenças Assintomáticas/psicologia , Criança , Pré-Escolar , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/psicologia , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Triagem Neonatal/métodos , Adulto Jovem
9.
Neuron ; 94(6): 1190-1204.e6, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641115

RESUMO

Animals rely on dedicated sensory circuits to extract and encode environmental features. How individual neurons integrate and translate these features into behavioral responses remains a major question. Here, we identify a visual projection neuron type that conveys predator approach information to the Drosophila giant fiber (GF) escape circuit. Genetic removal of this input during looming stimuli reveals that it encodes angular expansion velocity, whereas other input cell type(s) encode angular size. Motor program selection and timing emerge from linear integration of these two features within the GF. Linear integration improves size detection invariance over prior models and appropriately biases motor selection to rapid, GF-mediated escapes during fast looms. Our findings suggest feature integration, and motor control may occur as simultaneous operations within the same neuron and establish the Drosophila escape circuit as a model system in which these computations may be further dissected at the circuit level. VIDEO ABSTRACT.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Reação de Fuga/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Drosophila melanogaster , Imuno-Histoquímica , Microscopia Confocal , Neurônios/citologia , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Probabilidade
10.
Elife ; 52016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28029094

RESUMO

Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.


Assuntos
Drosophila/anatomia & histologia , Drosophila/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Animais , Comportamento Animal , Imagem Óptica , Optogenética , Imagens com Corantes Sensíveis à Voltagem
12.
PLoS One ; 11(5): e0155957, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27223118

RESUMO

Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/biossíntese , Voo Animal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Interação Gene-Ambiente , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Fatores de Transcrição/biossíntese , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética
14.
J Prev Interv Community ; 43(3): 186-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151168

RESUMO

Christian serpent handling sects of Appalachia comprise a community that has long been mischaracterized and marginalized by the larger communities surrounding them. To explore this dynamic, this article traces the emergence of serpent handling in Appalachia and the emergence of anti-serpent-handling state laws, which eventually failed to curb the practice, as local communities gave serpent handling groups support. We present two studies to consider for improving community relations with serpent handling sects. In study 1, we present data relating the incidence of reported serpent-bite deaths with the rise of anti-serpent-handling laws and their eventual abatement, based on increasing acceptance of serpent handlers by the larger community. Study 2 presents interview data on serpent bites and death that provide explanations for these events from the cultural and religious perspective. We conclude that first-hand knowledge about serpent handlers, and other marginalized groups, helps to lessen suspicion and allows them to be seen as not much different, which are tendencies that are important for promoting inter-community harmony.


Assuntos
Cristianismo , Participação da Comunidade , Regulamentação Governamental , Mordeduras de Serpentes/psicologia , Região dos Apalaches/epidemiologia , Humanos , Mordeduras de Serpentes/mortalidade
17.
Nat Neurosci ; 17(7): 962-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908103

RESUMO

We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Algoritmos , Animais , Sinalização do Cálcio/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Reação de Fuga/fisiologia , Feminino , Voo Animal/fisiologia , Imuno-Histoquímica , Modelos Neurológicos , Modelos Psicológicos , Rede Nervosa/fisiologia , Odonatos , Estimulação Luminosa , Comportamento Predatório , Gravação em Vídeo
18.
Elife ; 3: e01699, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755286

RESUMO

Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001.


Assuntos
Axônios/fisiologia , Plasticidade Neuronal , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Imagem Óptica , Receptores de Peptídeos de Invertebrados/metabolismo
19.
J Cell Biol ; 205(1): 21-31, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24733584

RESUMO

Most chemical neurotransmission occurs through Ca(2+)-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca(2+) sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca(2+) dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca(2+) for the assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H(+)-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca(2+)-Calmodulin (CaM)-dependent manner. Ca(2+)-CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca(2+)-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca(2+)-CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Junção Neuromuscular/enzimologia , Proteínas Qa-SNARE/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Complexos Multiproteicos , Ligação Proteica , Subunidades Proteicas , Proteínas Qa-SNARE/genética , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...