Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Avian Pathol ; : 1-9, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742448

RESUMO

The infectious bursal disease virus (IBDV) is a significant pathogen affecting the poultry industry worldwide. Its epidemiological history has been marked by the emergence of strains with different antigenic, pathogenic, and genetic features, some of which have shown notable spread potential. The A2dB1b genotype, also known as novel variant, has become widespread and gained increased relevance in IBDV epidemiology. This genotype was described in China in the 2010s and rapidly spread in Asia and Africa. The present study describes the circulation of the A2dB1b genotype in Argentina. Applying a next-generation sequencing approach, we obtained the complete coding sequence of 18 Argentine viruses. The high level of genomic homogeneity observed amongst these viruses, their monophyletic clustering in both partial and complete segments A and B derived phylogenies, and their close relatedness to some Chinese strains suggest that a unique transcontinental spread event from China to Argentina occurred recently. The apparent success of the A2dB1b genotype spreading throughout Asia, Africa, and South America may partially be due to specific amino acid characteristics. Novel residues in the hypervariable region of VP2 may help A2dB1b IBDVs evade the protection elicited by the applied commercial vaccines. Our findings underscore the importance of continuous characterization of field samples and evaluation of the control measures currently applied to fight against this specific IBDV genotype.

2.
Virus Evol ; 10(1): veae031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756986

RESUMO

The highly pathogenic avian influenza viruses of clade 2.3.4.4b have caused unprecedented deaths in South American wild birds, poultry, and marine mammals. In September 2023, pinnipeds and seabirds appeared dead on the Uruguayan Atlantic coast. Sixteen influenza virus strains were characterized by real-time reverse transcription PCR and genome sequencing in samples from sea lions (Otaria flavescens), fur seals (Arctocephalus australis), and terns (Sterna hirundinacea). Phylogenetic and ancestral reconstruction analysis showed that these strains have pinnipeds most likely as the ancestral host, representing a recent introduction of clade 2.3.4.4b in Uruguay. The Uruguayan and closely related strains from Peru (sea lions) and Chile (sea lions and a human case) carry mammalian adaptative residues 591K and 701N in the viral polymerase basic protein 2 (PB2). Our findings suggest that clade 2.3.4.4b strains in South America may have spread from mammals to mammals and seabirds, revealing a new transmission route.

3.
J Virol Methods ; 322: 114807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683937

RESUMO

The infectious bursal disease virus (IBDV) causes a severe immunosuppressive disorder in young chickens. IBDV evolution resulted in the emergence of strains with divergent genetic, antigenic, and pathogenic characteristics. Genetic classification is typically performed by sequencing the coding region of the most immunogenic region of the viral protein 2 (VP2). Sequencing both double-stranded RNA genome segments is essential to achieve a more comprehensive IBDV classification that can detect recombinants and reassortments. Here, we report the development and standardization of a tiled PCR amplicon protocol for the direct and cost-effective genome sequencing of global IBDV strains using next-generation technology. Primers for tiled PCR were designed with adapters to bypass expensive and time-consuming library preparation steps. Sequencing was performed on Illumina MiniSeq equipment, and fourteen complete genomes of field strains were assembled using reference sequences. The PCR-enrichment step was used to obtain genomes from low-titer biological samples that were difficult to amplify using traditional sequencing. Phylogenetic analyses of the obtained genomes confirmed previous strain classification. By combining the enrichment methodology with massive sequencing, it is possible to obtain IBDV genomic sequences in a fast and affordable manner. This procedure can be a valuable tool to better understand virus epidemiology.


Assuntos
Vírus da Doença Infecciosa da Bursa , Animais , Vírus da Doença Infecciosa da Bursa/genética , Filogenia , Galinhas , Reação em Cadeia da Polimerase , Sequência de Bases
4.
Viruses ; 15(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37515267

RESUMO

The avian infectious bronchitis virus (IBV) is a coronavirus that mutates frequently, leading to a contagious and acute disease that results in economic losses to the global poultry industry. Due to its genetic and serological diversity, IBV poses a challenge in preventing and controlling the pathogen. The full-length S1 sequence analysis identifies seven main genotypes (GI-GVII) comprising 35 viral lineages. In addition to the previously described lineage, a new GI lineage (GI-30) and two lineages from novel genotypes (GVIII-1 and GIX-1) have been described in Mexico. To prevent the spread of IBV outbreaks in a specific geographic location and select the suitable vaccine, it is helpful to genetically identify the circulating IBV types. Moreover, sequencing genomes can provide essential insights into virus evolution and significantly enhance our understanding of IBV variability. However, only genomes of previously described lineages (GI-1, GI-9, GI-13, and GI-17) have been reported for Mexican strains. Here, we sequenced new genomes from Mexican lineages, including the indigenous GI-30, GVIII-1, and GIX-1 lineages. Comparative genomics reveals that Mexico has relatively homogenous lineages (i.e., GI-13), some with greater variability (i.e., GI-1 and GI-9), and others extremely divergent (GI-30, GVIII-1, and GIX-1). The circulating lineages and intra-lineage variability support the unique diversity and dynamic of Mexican IBV.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Vírus da Bronquite Infecciosa/genética , México/epidemiologia , Galinhas , Genótipo , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Recombinação Genética , Doenças das Aves Domésticas/epidemiologia , Filogenia
5.
Gene Rep ; 29: 101703, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36338321

RESUMO

The genetic variability of SARS-CoV-2 (genus Betacoronavirus, family Coronaviridae) has been scrutinized since its first detection in December 2019. Although the role of structural variants, particularly deletions, in virus evolution is little explored, these genome changes are extremely frequent. They are associated with relevant processes, including immune escape and attenuation. Deletions commonly occur in accessory ORFs and might even lead to the complete loss of one or more ORFs. This scenario poses an interesting question about the origin and spreading of extreme structural rearrangements that persist without compromising virus viability. Here, we analyze the genome of SARS-CoV-2 in late 2021 in Uruguay and identify a Delta lineage (AY.20) that experienced a large deletion (872 nucleotides according to the reference Wuhan strain) that removes the 7a, 7b, and 8 ORFs. Deleted viruses coexist with wild-type (without deletion) AY.20 and AY.43 strains. The Uruguayan deletion is like those identified in Delta strains from Poland and Japan but occurs in a different Delta clade. Besides providing proof of the circulation of this large deletion in America, we infer that the 872-deletion arises by the consecutive occurrence of a 6-nucleotide deletion, characteristic of delta strains, and an 866-nucleotide deletion that arose independently in the AY.20 Uruguayan lineage. The largest deletion occurs adjacent to transcription regulatory sequences needed to synthesize the nested set of subgenomic mRNAs that serve as templates for transcription. Our findings support the role of transcription sequences as a hotspot for copy-choice recombination and highlight the remarkable dynamic of SARS-CoV-2 genomes.

6.
Viruses ; 14(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298650

RESUMO

The gammacoronavirus avian infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of primary economic importance to the global poultry industry. Two IBV lineages (GI-11 and GI-16) have been widely circulating for decades in South America. GI-11 is endemic to South America, and the GI-16 is globally distributed. We obtained full-length IBV genomes from Argentine and Uruguayan farms using Illumina sequencing. Genomes of the GI-11 and GI-16 lineages from Argentina and Uruguay differ in part of the spike coding region. The remaining genome regions are similar to the Chinese and Italian strains of the GI-16 lineage that emerged in Asia or Europe in the 1970s. Our findings support that the indigenous GI-11 strains recombine extensively with the invasive GI-16 strains. During the recombination process, GI-11 acquired most of the sequences of the GI-16, retaining the original S1 sequence. GI-11 strains with recombinant genomes are circulating forms that underwent further local evolution. The current IBV scenario in South America includes the GI-16 lineage, recombinant GI-11 strains sharing high similarity with GI-16 outside S1, and Brazilian GI-11 strains with a divergent genomic background. There is also sporadic recombinant in the GI-11 and GI-16 lineages among vaccine and field strains. Our findings exemplified the ability of IBV to generate emergent lineage by using the S gene in different genomic backgrounds. This unique example of recombinational microevolution underscores the genomic plasticity of IBV in South America.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Vírus da Bronquite Infecciosa/genética , Galinhas , Filogenia , Mutação , Recombinação Genética , Brasil
7.
Poult Sci ; 101(10): 102076, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041394

RESUMO

The avian infectious bronchitis virus (IBV) is a highly mutable coronavirus that causes an acute and highly contagious disease responsible for economic losses to the poultry industry worldwide. Preventing and controlling bronchitis disease is difficulted by the numerous IBV circulating types with limited antigenic cross-protection that hamper the prevention and control by heterologous vaccines. The coding region of the variable spike S1 receptor-attachment domain is used to classify IBV in 7 genotypes (GI-GVII) comprising 35 viral lineages (1-35). Knowledge of the circulating IBV types causing outbreaks in a specific geographic region is beneficial to select better the appropriate vaccine(s) and contribute to disease control. In the study, 17 avian infectious bronchitis virus strains were obtained from chickens showing signs of illness in Mexico from 2007 to 2021. We detected 4 lineages within genotype I, three already known (GI-3, GI-9, GI-13) and one newly described (GI-30). In addition, we identified 2 divergent monophyletic groups that are tentatively described as lineages of new genotypes (GVIII-1 and GIX-1). Our findings revealed that Mexico's high genetic IBV diversity results from the co-circulation of divergent lineages belonging to different genotypes. Mexican IBV lineages differ significantly from Massachusetts and Connecticut vaccine strains, indicating that the currently used vaccines may need to be updated.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Variação Genética , Vírus da Bronquite Infecciosa/genética , México/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...