Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2314-2326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32324562

RESUMO

The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be exactly computed thanks to a pioneering approach of Hannenhalli and Pevzner from 1995. In 2000, El-Mabrouk extended the inversion model to perform the comparison of unichromosomal genomes with unequal contents, combining inversions with insertions and deletions (indels) of DNA segments, giving rise to the inversion-indel distance. However, only a heuristic was provided for its computation. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). In 2006, Bergeron, Mixtacki and Stoye showed that the DCJ distance can be computed in linear time with a very simple procedure. As a consequence, in 2010 we gave a linear-time algorithm to compute the DCJ-indel distance. This result allowed the inversion-indel model to be revisited from another angle. In 2013, we could show that, when the diagram that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. In the present work we complete the study of the inversion-indel distance by giving the first algorithm to compute it exactly even in the presence of bad components.


Assuntos
Genômica/métodos , Mutação INDEL/genética , Algoritmos , Rearranjo Gênico/genética
2.
BMC Bioinformatics ; 14 Suppl 15: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564182

RESUMO

BACKGROUND: The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. RESULTS: In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components.


Assuntos
Modelos Genéticos , Algoritmos , Inversão Cromossômica , Genoma , Mutação INDEL
3.
J Comput Biol ; 18(9): 1167-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21899423

RESUMO

Many approaches to compute the genomic distance are still limited to genomes with the same content, without duplicated markers. However, differences in the gene content are frequently observed and can reflect important evolutionary aspects. While duplicated markers can hardly be handled by exact models, when duplicated markers are not allowed, a few polynomial time algorithms that include genome rearrangements, insertions and deletions were already proposed. In an attempt to improve these results, in the present work we give the first linear time algorithm to compute the distance between two multichromosomal genomes with unequal content, but without duplicated markers, considering insertions, deletions and double cut and join (DCJ) operations. We derive from this approach algorithms to sort one genome into another one also using DCJ operations, insertions and deletions. The optimal sorting scenarios can have different compositions and we compare two types of sorting scenarios: one that maximizes and one that minimizes the number of DCJ operations with respect to the number of insertions and deletions. We also show that, although the triangle inequality can be disrupted in the proposed genomic distance, it is possible to correct this problem adopting a surcharge on the number of non-common markers. We use our method to analyze six species of Rickettsia, a group of obligate intracellular parasites, and identify preliminary evidence of clusters of deletions.


Assuntos
Genoma Bacteriano , Mutação INDEL , Rickettsia/genética , Algoritmos , Simulação por Computador , Evolução Molecular , Modelos Genéticos , Filogenia , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...