Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Am J Sports Med ; 52(8): 1970-1978, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38828624

RESUMO

BACKGROUND: New techniques have been proposed to better address anteromedial rotatory instability in a medial collateral ligament (MCL)-injured knee that require an extra graft and more surgical implants, which might not be feasible in every clinical setting. PURPOSE: To investigate if improved resistance to anteromedial rotatory instability can be achieved by using a single-graft, double-bundle (DB) MCL reconstruction with a proximal fixation more anteriorly on the tibia, in comparison with the gold standard single-bundle (SB) MCL reconstruction. STUDY DESIGN: Controlled laboratory study. METHODS: Eight fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic simulator in intact knee, superficial MCL/deep MCL-deficient, and reconstruction states. Three different reconstructions were tested: DB MCL no proximal tibial fixation and DB and SB MCL reconstruction with proximal tibial fixation. Knee kinematics were recorded at 0°, 30°, 60°, and 90° of knee flexion for the following measurements: 8 N·m of valgus rotation (VR), 5 N·m of external tibial rotation, 5 N·m of internal tibial rotation, combined 89 N of anterior tibial translation and 5 N·m of external rotation for anteromedial rotation (AMR) and anteromedial translation (AMT). The differences between each state for every measurement were analyzed with VR and AMR/AMT as primary outcomes. RESULTS: Cutting the superficial MCL/deep MCL increased VR and AMR/AMT in all knee positions except at 90° for VR (P < .05). All reconstructions restored VR to the intact state except at 90° of knee flexion (P < .05). The DB MCL no proximal tibial fixation reconstruction could not restore intact AMR/AMT kinematics in any knee position (P < .05). Adding an anterior-based proximal tibial fixation restored intact AMR/AMT kinematics at ≥30° of knee flexion except at 90° for AMT (P < .05). The SB MCL reconstruction could not restore intact AMR/AMT kinematics at 0° and 90° of knee flexion (P < .05). CONCLUSION: In this in vitro cadaveric study, a DB MCL reconstruction with anteriorly placed proximal tibial fixation was able to control AMR and AMT better than the gold standard SB MCL reconstruction. CLINICAL RELEVANCE: In patients with anteromedial rotatory instability and valgus instability, a DB MCL reconstruction may be superior to the SB MCL reconstruction, without causing extra surgical morbidity or additional costs.


Assuntos
Cadáver , Instabilidade Articular , Ligamento Colateral Médio do Joelho , Humanos , Instabilidade Articular/cirurgia , Instabilidade Articular/fisiopatologia , Ligamento Colateral Médio do Joelho/cirurgia , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Rotação , Masculino , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Feminino , Procedimentos de Cirurgia Plástica/métodos , Idoso , Tíbia/cirurgia , Amplitude de Movimento Articular
2.
Am J Sports Med ; 52(8): 1952-1959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767158

RESUMO

BACKGROUND: Injuries to the medial collateral ligament (MCL), specifically the deep MCL (dMCL) and superficial MCL (sMCL), are both reported to be factors in anteromedial rotatory instability (AMRI); however, a partial sMCL (psMCL) injury is often present, the effect of which on AMRI is unknown. PURPOSE: To investigate the effect of a dMCL injury with or without a psMCL injury on knee joint laxity. STUDY DESIGN: Controlled laboratory study. METHODS: Sixteen fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic simulator. The anterior cruciate ligament (ACL) was cut first and last in protocols 1 and 2, respectively. The dMCL was cut completely, followed by an intermediary psMCL injury state before the sMCL was completely sectioned. Tibiofemoral kinematics were measured at 0°, 30°, 60°, and 90° of knee flexion for the following measurements: 8 N·m of valgus rotation (VR), 4 N·m of external tibial rotation, 4 N·m of internal tibial rotation, and combined 89 N of anterior tibial translation and 4 N·m of external tibial rotation for both anteromedial rotation (AMR) and anteromedial translation. The differences between subsequent states, as well as differences with respect to the intact state, were analyzed. RESULTS: In an ACL-intact or -deficient joint, a combined dMCL and psMCL injury increased external tibial rotation and VR compared with the intact state at all angles. A significant increase in AMR was seen in the ACL-intact knee after this combined injury. Cutting the dMCL alone showed lower mean increases in AMR compared with the psMCL injury, which were significant only when the ACL was intact in knee flexion. Moreover, cutting the dMCL had no effect on VR. The ACL was the most important structure in controlling anteromedial translation, followed by the psMCL or dMCL depending on the knee flexion angle. CONCLUSION: A dMCL injury alone may produce a small increase in AMRI but not in VR. A combined dMCL and psMCL injury caused an increase in AMRI and VR. CLINICAL RELEVANCE: In clinical practice, if an increase in AMRI at 30° and 90° of knee flexion is seen together with some increase in VR, a combined dMCL and psMCL injury should be suspected.


Assuntos
Cadáver , Instabilidade Articular , Articulação do Joelho , Ligamento Colateral Médio do Joelho , Humanos , Instabilidade Articular/fisiopatologia , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/fisiopatologia , Articulação do Joelho/fisiopatologia , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Rotação , Traumatismos do Joelho/fisiopatologia , Amplitude de Movimento Articular
3.
Am J Sports Med ; 52(8): 1960-1969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38819001

RESUMO

BACKGROUND: Injuries to the deep medial collateral ligament (dMCL) and partial superficial MCL (psMCL) can cause anteromedial rotatory instability; however, the contribution of each these injuries in restraining anteromedial rotatory instability and the effect on the anterior cruciate ligament (ACL) load remain unknown. PURPOSE: To investigate the contributions of the different MCL structures in restraining tibiofemoral motion and to evaluate the load through the ACL after MCL injury, especially after combined dMCL/psMCL injury. STUDY DESIGN: Controlled laboratory study. METHODS: Sixteen fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic simulator. Tibiofemoral kinematic parameters were recorded at 0°, 30°, 60°, and 90° of knee flexion for the following measurements: 8-N·m valgus rotation, 4-N·m external tibial rotation (ER), 4-N·m internal tibial rotation, and a combined 89-N anterior tibial translation and 4-N·m ER for both anteromedial rotation (AMR) and anteromedial translation (AMT). The kinematic parameters of the 3 different MCL injuries (dMCL; dMCL/psMCL; dMCL/superficial MCL (sMCL)) were recorded and reapplied either in an ACL-deficient joint (load sharing) or before and after cutting the ACL (ACL load). The loads were calculated by applying the principle of superposition. RESULTS: The dMCL had the largest effect on reducing the force/torque during ER, AMR, and AMT in extension and the psMCL injury at 30° to 90° of knee flexion (P < .05). In a comparison of the load through the ACL when the MCL was intact, the ACL load increased by 46% and 127% after dMCL injury and combined dMCL/psMCL injury, respectively, at 30° of knee flexion during ER. In valgus rotation, a significant increase in ACL load was seen only at 90° of knee flexion. CONCLUSION: The psMCL injury made the largest contribution to the reduction of net force/torque during AMR/AMT at 30° to 90° of flexion. Concomitant dMCL/psMCL injury increased the ACL load, mainly during ER. CLINICAL RELEVANCE: If a surgical procedure is being considered to treat anteromedial rotatory instability, then the procedure should focus on restoring sMCL function, as injury to this structure causes a major loss of the knee joint's capacity to restrain AMR/AMT.


Assuntos
Ligamento Cruzado Anterior , Ligamento Colateral Médio do Joelho , Suporte de Carga , Humanos , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/fisiopatologia , Fenômenos Biomecânicos , Suporte de Carga/fisiologia , Pessoa de Meia-Idade , Ligamento Cruzado Anterior/fisiopatologia , Ligamento Cruzado Anterior/fisiologia , Masculino , Cadáver , Feminino , Instabilidade Articular/fisiopatologia , Idoso , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Rotação , Articulação do Joelho/fisiologia , Articulação do Joelho/fisiopatologia , Traumatismos do Joelho/fisiopatologia , Adulto , Amplitude de Movimento Articular/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38713877

RESUMO

PURPOSE: The purpose of this study was to compare micromotion of two new cementless tibial baseplates to a cementless design with well-published clinical success. METHODS: Three cementless tibial baseplate designs (fixed-bearing [FB] with keel and cruciform pegs, rotating-platform with porous central cone and pegs, FB with cruciform keel and scalloped pegs) were evaluated on sawbone models. Loading was applied to the baseplate at a rate of 1 Hz for 10,000 cycles, which represents 6-8 weeks of stair descent. This time frame also represents the approximate time length for the induction of biologic fixation of cementless implants. Compressive and shear micromotion at the sawbone-implant interface were measured. RESULTS: At the end of the loading protocol, the central cone rotating-platform design exhibited greater micromotion at the anterior (p < 0.001), posterior (p < 0.001) and medial locations (p = 0.049) compared to the other two implants. The central cone design also exhibited greater translational micromotion in the sagittal plane at the medial (p = 0.001) and lateral locations (p = 0.034) and in the coronal plane anteriorly (p = 0.007). CONCLUSION: The cementless central cone rotating-platform baseplate demonstrated greater vertical and translational micromotion compared to the two FB baseplates with a keel underloading. This may indicate lower initial mechanical stability in implants without a keel, which possibly affects osseointegration. The implication of this is yet unknown and requires further long-term clinical follow-up to correlate these laboratory findings. LEVEL OF EVIDENCE: V (biomechanical study).

5.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683101

RESUMO

Understanding the biomechanical impact of injuries and reconstruction of the anterior cruciate ligament (ACL) is vital for improving surgical treatments that restore normal knee function. The purpose of this study was to develop a technique that enables parametric analysis of the effect of the ACL reconstruction (ACLR) in cadaver knees, by replacing its contributions with that of a specimen-specific virtual ACLR that can be enabled, disabled, or modified. Twelve ACLR reconstructed knees were mounted onto a motion simulator. In situ ACLR graft forces were measured using superposition, and these data were used to design specimen-specific virtual ACLRs that would yield the same ligament force-elongation behaviors. Tests were then repeated using the virtual ACLR in place of the real ACLR and following that in ACL deficient knee by disabling the virtual ACLR. In comparison to the ACL deficient state, the virtual ACLRs were able to restore knee stability to the same extent as real ACLRs. The average differences between the anterior tibial translation (ATT) of the virtual ACLR versus the real ACLR were +1.6 ± 0.9 mm (p = 0.4), +2.1 ± 0.4 mm (p = 0.4), and +1.0 ± 0.9 mm (p = 0.4) during Anterior drawer, Lachman and Pivot-shift tests, respectively, which is small in comparison to the full ATT range of motion (ROM) of these knees. Therefore, we conclude that a virtual ACLR can be used in place of real ACLR during biomechanical testing of cadaveric knees. This capability opens the door for future studies that can leverage parameterization of the ACLR for surgical design optimization.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Articulação do Joelho , Fenômenos Mecânicos , Humanos , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Amplitude de Movimento Articular
6.
Smart Mater Struct ; 33(5): 055034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645721

RESUMO

A self-powered and durable pressure sensor for large-scale pressure detection on the knee implant would be highly advantageous for designing long-lasting and reliable knee implants as well as obtaining information about knee function after the operation. The purpose of this study is to develop a robust energy harvester that can convert wide ranges of pressure to electricity to power a load sensor inside the knee implant. To efficiently convert loads to electricity, we design a cuboid-array-structured tribo-pizoelectric nanogenerator (TPENG) in vertical contact mode inside a knee implant package. The proposed TPENG is fabricated with aluminum and cuboid-patterned silicone rubber layers. Using the cuboid-patterned silicone rubber as a dielectric and aluminum as electrodes improves performance compared with previously reported self-powered sensors. The combination of 10wt% dopamine-modified BaTiO3 piezoelectric nanoparticles in the silicone rubber enhanced electrical stability and mechanical durability of the silicone rubber. To examine the output, the package-harvester assemblies are loaded into an MTS machine under different periodic loading. Under different cyclic loading, frequencies, and resistance loads, the harvester's output performance is also theoretically studied and experimentally verified. The proposed cuboid-array-structured TPENG integrated into the knee implant package can generate approximately 15µW of apparent power under dynamic compressive loading of 2200 N magnitude. In addition, as a result of the TPENG's materials being effectively optimized, it possesses remarkable mechanical durability and signal stability, functioning after more than 30 000 cycles under 2200 N load and producing about 300 V peak to peak. We have also presented a mathematical model and numerical results that closely capture experimental results. We have reported how the TPENG charge density varies with force. This study represents a significant advancement in a better understanding of harvesting mechanical energy for instrumented knee implants to detect a load imbalance or abnormal gait patterns.

7.
J Biomech Eng ; 146(8)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529555

RESUMO

A variety of total knee arthroplasty (TKA) designs offer increased congruency bearing options, primarily to compensate for a loss of posterior cruciate ligament (PCL) function. However, their efficacy in providing sufficient stability under different circumstances requires further investigation. The preclinical testing of prosthesis components on joint motion simulators is useful for quantifying how design changes affect joint stability. However, this type of testing may not be clinically relevant because surrounding ligaments are either ignored or greatly simplified. This study aimed to assess the kinematics and stability of TKA joints during various motions using condylar-stabilized (CS) bearings without a PCL versus cruciate-retaining (CR) bearings with an intact PCL. TKA prosthetic components were tested on a joint motion simulator while being stabilized with five different sets of specimen-specific virtual ligament envelopes. In comparison to CR knees, CS knees without a PCL exhibited a greater amount of posterior tibial displacement laxity, with a mean increase of 2.7±2.1 mm (p = 0.03). Additionally, significant differences were observed in the anterior-posterior kinematics of the knee joint during activities of daily living (ADL) between the two designs. These results were consistent with previous cadaveric investigations, which indicated that CS knees without a PCL are less resistant to posterior tibial displacement than CR knees with one. This study employing virtual ligaments confirms previous findings that the raised anterior lip of some CS bearings may not completely compensate for the absence of the PCL; however, as both studies used reduced joint contact forces, the contributions of this design feature may be attenuated.


Assuntos
Artroplastia do Joelho , Membros Artificiais , Prótese do Joelho , Ligamento Cruzado Posterior , Humanos , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Atividades Cotidianas , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/cirurgia
8.
J Orthop Res ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520665

RESUMO

Porous metallic prosthesis components can now be manufactured using additive manufacturing techniques, and may prove beneficial for promoting bony ingrowth, for accommodating drug delivery systems, and for reducing stress shielding. Using finite element modeling techniques, 36 scenarios (three porous stems, three bone densities, and four held arm positions) were analysed to assess the viability of porous humeral stems for use in total shoulder arthroplasty, and their resulting mechanobiological impact on the surrounding humerus bone. All three porous stems were predicted to experience stresses below the yield strength of Ti6Al4V (880 MPa) and to be capable of withstanding more than 10 million cycles of each loading scenario before failure. There was an indication that within an 80 mm region of the proximal humerus, there would be a reduction in bone resorption as stem porosity increased. Overall, this study shows promise that these porous structures are mechanically viable for incorporation into permanent shoulder prostheses to combat orthopedic infections.

9.
Arthroscopy ; 40(2): 362-370, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37391102

RESUMO

PURPOSE: To evaluate the impact of capsular management on joint constraint and femoral head translations during simulated activities of daily living (ADL). METHODS: Using 6 (n = 6) cadaveric hip specimens, the effect of capsulotomies and repair was then evaluated during simulated ADL. Joint forces and rotational kinematics associated with gait and sitting, adopted from telemeterized implant studies, were applied to the hip using a 6-degrees of freedom (DOF) joint motion simulator. Testing occurred after creation of portals, interportal capsulotomy (IPC), IPC repair, T-capsulotomy (T-Cap), partial T-Cap repair, and full T-Cap repair. The anterior-posterior (AP), medial-lateral (ML), and axial compression DOFs were operated in force control, whereas flexion-extension, adduction-abduction, and internal-external rotation were manipulated in displacement control. Resulting femoral head translations and joint reaction torques were recorded and evaluated. Subsequently, the mean-centered range of femoral head displacements and peak signed joint restraint torques were calculated and compared. RESULTS: During simulated gait and sitting, the mean range of AP femoral head displacements with respect to intact exceeded 1% of the femoral head diameter after creating portals, T-Caps, and partial T-Cap repair (Wilcoxon signed rank P < .05); the mean ranges of ML displacements did not. Deviations in femoral head kinematics varied by capsule stage but were never very large. No consistent trends with respect to alterations in peak joint restrain torques were observed. CONCLUSIONS: In this cadaveric biomechanical study, capsulotomy and repair minimally affected resultant femoral head translation and joint torques during simulated ADLs. CLINICAL RELEVANCE: The tested ADLs appear safe to perform after surgery, regardless of capsular status, because adverse kinematics were not observed. However, further study is required to determine the importance of capsular repair beyond time-zero biomechanics and the resultant effect on patient-reported outcomes.


Assuntos
Articulação do Quadril , Instabilidade Articular , Humanos , Articulação do Quadril/cirurgia , Atividades Cotidianas , Torque , Cadáver , Amplitude de Movimento Articular , Fenômenos Biomecânicos , Instabilidade Articular/cirurgia
10.
J Knee Surg ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992725

RESUMO

The conventional approach for total knee arthroplasty (TKA) is a medial parapatellar approach (MPA). We aimed to study patient outcomes and kinematics with a quadriceps sparing lateral subvastus lateralis approach (SLA). Patients with neutral/varus alignment undergoing primary TKA were consented to undergo the SLA. At 1-year postoperative, patients underwent radiostereometric analysis. Patients were administered the Short Form 12 (SF-12), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Society Score (KSS). Kinematics and outcome data were compared to a group undergoing TKA via conventional MPA. Fourteen patients underwent TKA via SLA with a mean age 71.5 ± 8.0 and mean body mass index (BMI) 31.0 ± 4.5. The MPA group had 13 patients with mean age 63.4 ± 5.5 (p = 0.006) and mean BMI 31.2 ± 4.6 (p = 0.95). The SLA resulted in a significantly more posterior medial contact point at 0 (p = 0.011), 20 (p = 0.020), and 40 (p = 0.039) degrees of flexion. There was no significant difference in medial contact point from 60 to 120 degrees, lateral contact point at any degree of flexion, or axial rotation. There was no difference in improvement in postoperative WOMAC, SF-12, KSS function, and total KSS knee scores between groups. The MPA group had a significantly greater improvement in KSS knee scores at 3 months (p < 0.001), 1 year (p = 0.003), and 2 years (p = 0.017). The SLA resulted in increased medial femoral rollback early in flexion. Although both approaches resulted in improved postoperative outcomes, the MPA group showed significantly greater improvements in KSS knee scores at 3 months, 1 year, and 2 years. Further studies are required to identify any benefits that the SLA may offer. LEVEL OF EVIDENCE: Therapeutic Level II.

11.
Hip Int ; : 11207000231199941, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37786293

RESUMO

BACKGROUND: Corrosion at the head-neck junction of femoral stems is a rare complication of total hip arthroplasty (THA) with manifestations ranging from subclinical wear to failure. Prior studies have identified a single femoral component design with an increased propensity for catastrophic trunnion failure. The purpose of the present study was to quantify trunnion damage of this femoral component retrieved from patients undergoing revision THA for non-trunnionosis indications. METHODS: 24 femoral components from a single manufacturer were identified for study inclusion. Each prosthesis underwent stereomicroscopic inspection. Corrosion and fretting scores were assigned per the Goldberg criteria to quadrants of the trunnion. Material loss was calculated based on cone angles across trunnion quadrants. This was carried out using a coordinate measuring machine that digitised each trunnion surface. Stems were compared to a series of femoral stems with the same trunnion design. RESULTS: 20 of the 24 (83%) trunnions demonstrated corrosion, all 24 trunnions demonstrated fretting. Corrosion scores did not statistically differ with respect to trunnion zone (p = 0.53), while fretting scores were higher in the inferior compared to the superior zones (p < 0.001). There was no significant difference in cone angles assessing material loss between stems (p = 0.25). CONCLUSIONS: Evidence of trunnion damage was observed in each stem retrieved for non-trunnionosis revision. Fretting occurred more frequently about the inferior quadrants. However, digitised trunnion shapes were similar between compared stems exhibiting no material loss. Therefore, it is possible that previous reports of trunnion failures for this implant are not a systemic issue, and that further investigation is required.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37703067

RESUMO

Total knee arthroplasty (TKA) is an end-stage treatment for knee osteoarthritis that relieves pain and loss of mobility, but patient satisfaction and revision rates require improvement. One cause for TKA revision is joint instability, which may be due to improper ligament balancing. A better understanding of the relationship between prosthesis design, alignment, and ligament engagement is necessary to improve component designs and surgical techniques to achieve better outcomes. We investigated the biomechanical effects of ligament model complexity and ligament wrapping during laxity tests using a virtual joint motion simulator. There was little difference in kinematics due to ligament complexity or ligament wrapping.

13.
J Mech Behav Biomed Mater ; 146: 106076, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598509

RESUMO

Porous additively-manufactured structures could have a niche in orthopaedic implants, due to their potential to reduce stiffness (stress-shielding), improve bony ingrowth, and potential to house reservoirs of drug-eluting non-structural biomaterials. Computer aided design and finite element (FE) modelling plays an important role in the design of porous structured biomedical implants; however it is important to validate both their static and fatigue behaviours using experimental testing. This study compared the mechanical behaviors of titanium cylindrical gyroid structures of varying porosities using physical testing of additively manufactured prototypes and FE models. There was agreement in the measured and predicted relationships between porosity and apparent modulus of elasticity. As porosity increased (and wall thickness decreased), the structures failed at a lower number of cycles when loaded at the same percentage of their yield strengths. Calibration of the fatigue strength coefficient from a previously published value of 1586.5 MPa-1225 MPa greatly improved the fatigue life prediction accuracy for all the gyroid structures. Nevertheless, differences of up to 54% in the predicted versus experimental fatigue lives remained, which could be attributed to difficulties with how the precise time and location of failure is defined in the simulations, and/or minor differences in nominal and actual porosities. Although further calibration and validation should be explored, this study demonstrates that static and fatigue FE-modelling techniques could be used to aid in the design of porous prosthetics.


Assuntos
Temperatura Alta , Titânio , Ligas , Lasers , Teste de Materiais
14.
J Wrist Surg ; 12(4): 359-363, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564616

RESUMO

Background The Tolat sigmoid notch classification is a commonly used classification to characterize the distal radioulnar joint (DRUJ). This classification was based on a limited assessment of the entire joint, which may lead to inaccuracies in sigmoid notch evaluation. Questions/Purposes The purpose of this study is to assess the reliability of the Tolat classification for sigmoid notch characterization. Methods The sigmoid notch of 52 models of cadaveric forearms was assessed by applying the Tolat classification to the three-dimensional (3D) modeled notch and then slices at the start of the notch (0 mm) and 4 mm more proximal. The inter- and intrarater agreement was assessed using Cohen's and Fleiss' kappa statistic. Results Agreement between iterations regardless of slices or surgeons/radiologists was moderate. Intrarater agreement between pairs of slices (0 vs 4 mm, 0 mm vs 3D, 4 mm vs 3D) was moderate, whereas agreement between all slices was slight. Agreement between surgeons and between radiologists was moderate, while agreement across all raters and slices was fair. Models described as "other" were more consistent in 3D classifications and were commonly classified as a reverse ski slope. Conclusions Classification using the Tolat scheme is fair to moderate at best. Classification of the sigmoid notch using an axial view of the distal radius may not accurately reflect the anatomy throughout the notch. Clinical Relevance The Tolat classification supplies a limited analysis of the sigmoid notch, and does not represent a comprehensive evaluation of the entire joint. Future classification systems should characterize the entire sigmoid notch.

15.
Bioengineering (Basel) ; 10(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237573

RESUMO

Component alignment accuracy during total knee arthroplasty (TKA) has been improving through the adoption of image-based navigation and robotic surgical systems. The biomechanical implications of resulting component alignment error, however, should be better characterized to better understand how sensitive surgical outcomes are to alignment error. Thus, means for analyzing the relationships between alignment, joint kinematics, and ligament mechanics for candidate prosthesis component design are necessary. We used a digital twin of a commercially available joint motion simulator to evaluate the effects of femoral component rotational alignment. As anticipated, the model showed that an externally rotated femoral component results in a knee which is more varus in flexion, with lower medial collateral ligament tension compared to a TKA knee with a neutrally aligned femoral implant. With the simulation yielding logical results for this relatively simple test scenario, we can have more confidence in the accuracy of its predictions for more complicated scenarios.

16.
J Biomech Eng ; 145(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216311

RESUMO

Preclinical evaluation of total knee arthroplasty (TKA) components is essential to understanding their mechanical behavior and developing strategies for improving joint stability. While preclinical testing of TKA components has been useful in quantifying their effectiveness, such testing can be criticized for lacking clinical relevance, as the important contributions of surrounding soft tissues are either neglected or greatly simplified. The purpose of our study was to develop and determine if subject-specific virtual ligaments reproduce a similar behavior as native ligaments surrounding TKA joints. Six TKA knees were mounted to a motion simulator. Each was subjected to tests of anterior-posterior (AP), internal-external (IE), and varus-valgus (VV) laxity. The forces transmitted through major ligaments were measured using a sequential resection technique. By tuning the measured ligament forces and elongations to a generic nonlinear elastic ligament model, virtual ligaments were designed and used to simulate the soft tissue envelope around isolated TKA components. The average root-mean-square error (RMSE) between the laxity results of TKA joints with native versus virtual ligaments was 3.5 ± 1.8 mm during AP translation, 7.5 ± 4.2 deg during IE rotations, and 2.0 ± 1.2 deg during VV rotations. Interclass correlation coefficients (ICCs) indicated a good level of reliability for AP and IE laxity (0.85 and 0.84). To conclude, the advancement of virtual ligament envelopes as a more realistic representation of soft tissue constraint around TKA joints is a valuable approach for obtaining clinically relevant kinematics when testing TKA components on joint motion simulators.


Assuntos
Artroplastia do Joelho , Instabilidade Articular , Prótese do Joelho , Humanos , Artroplastia do Joelho/métodos , Reprodutibilidade dos Testes , Amplitude de Movimento Articular , Cadáver , Articulação do Joelho/cirurgia , Ligamentos , Fenômenos Biomecânicos
17.
Arthroplasty ; 4(1): 53, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522686

RESUMO

BACKGROUND: Posterior-stabilized (PS)-total knee arthroplasty (TKA) arose as an alternative to cruciate-retaining (CR)-TKA in the 1970s. Since then, it has become a popularly utilized TKA design with outcomes comparable to CR-TKA. The post-cam mechanism is unique to PS-TKA as it substitutes the function of the posterior cruciate ligament (PCL). The study aimed to understand the kinematic and laxity changes in PS-TKA with under- and overstuffing of the tibiofemoral joint space with the polyethylene (PE) insert. METHODS: This study employed a hybrid computational-experimental joint motion simulation on a VIVO 6 degrees of freedom (6-DoF) joint motion simulator (AMTI, Watertown, MA, USA). Physical prototypes of a virtually-performed TKA in mechanical alignment (MA) and kinematic alignment (KA) based on cadaveric CT scans and a virtual ligament model were utilized. The reference, understuffed (down 2 mm) and overstuffed (up 2 mm) joint spaces were simulated, neutral flexion and laxity testing loads and motions were performed for each configuration. RESULTS: The PE insert thickness influenced post-cam engagement, which occurred after 60º in the overstuffed configurations, after 60º-75º in the reference configurations and after 75º in the understuffed configurations. The understuffed configurations, compared to the reference configurations, resulted in a mean 2.0º (28%) and 2.0º (31%) increase in the coronal laxity in MA and KA respectively. The overstuffed configurations, compared to the reference configuration, resulted in an increase in the mean joint compressive forces (JCFs) by 73 N (61%) and 77 N (62%) in MA and KA models, respectively. CONCLUSIONS: The under- and overstuffing in PS-TKA alter the kinematics with variable effects. Understuffing decreases the stability, JCFs and inverse with overstuffing. Subtle changes in the PE insert thickness alter the post-cam mechanics.

18.
Orthop J Sports Med ; 10(10): 23259671221128348, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36313006

RESUMO

Background: It remains unclear if capsular management contributes to iatrogenic instability (microinstability) after hip arthroscopy. Purpose: To evaluate changes in torque, stiffness, and femoral head displacement after capsulotomy and repair in a cadaveric model. Study Design: Controlled laboratory study. Methods: A biomechanical analysis was performed using 10 cadaveric hip specimens. Each specimen was tested under the following conditions: (1) intact, (2) portals, (3) interportal capsulotomy (IPC), (4) IPC repair, (5) T-capsulotomy (T-cap), (6) partial T-cap repair, and (7) T-cap repair. Each capsular state was tested in neutral (0°) and then 30°, 60°, and 90° of flexion, with forces applied to achieve the displacement-controlled baseline limit of external rotation (ER), internal rotation (IR), abduction, and adduction. The resultant end-range torques and displacement were recorded. Results: For ER, capsulotomies significantly reduced torque and stiffness at 0°, 30°, and 60° and reduced stiffness at 90°; capsular repairs failed to restore torque and stiffness at 0°; and IPC repair failed to restore stiffness at 30° (P < .05 for all). For IR, capsulotomies significantly reduced torque and stiffness at 0°, 30°, and 60° and reduced stiffness at 90°; and capsular repairs failed to restore torque or stiffness at 0°, 30°, and 60° and failed to restore stiffness at 90° (P < .05 for all). For abduction, IPC significantly decreased torque at 60° and 90° and decreased stiffness at all positions; T-cap reduced torque and stiffness at all positions; IPC repair failed to restore stiffness at 0° and 90°; and T-cap repair failed at 0°, 60°, and 90° (P < .05 for all). For adduction, IPC significantly reduced torque at 0° and reduced stiffness at 0° and 30°; T-cap reduced torque at 0° and 90° and reduced stiffness at all positions; IPC repair failed to restore stiffness at 0° and 90°; and T-cap repair failed at 0°, 60°, and 90° (P < .05 for all). There were no statistically significant femoral head translations observed in any testing configurations. Conclusion: Complete capsular repair did not always restore intact kinematics, most notably at 0° and 30°. Despite this, there were no significant joint translations to corroborate concerns of microinstability. Clinical Relevance: Caution should be employed when applying rotational torques in lower levels of flexion (0° and 30°).

19.
Am J Sports Med ; 50(4): 962-967, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35099324

RESUMO

BACKGROUND: Different techniques to restore knee stability after posterolateral corner (PLC) injury have been described. The original anatomic PLC reconstruction uses 2 separate allografts to reconstruct the PLC. Access to allograft tissue continues to be a significant limitation of this technique, which led to the development of a modified anatomic approach utilizing a single autologous semitendinosus graft fixed on the tibia with an adjustable suspensory loop to enable differential tensioning of the PLC components. PURPOSE/HYPOTHESIS: The purpose of this study was to compare the modified anatomic technique with the original anatomic reconstruction in terms of varus and external rotatory laxity in a cadaveric biomechanical model. The hypothesis was that both techniques would restore varus and external rotatory laxity after a simulated complete PLC injury. STUDY DESIGN: Controlled laboratory study. METHODS: Eight pairs of fresh-frozen cadaveric knee specimens were tested to compare the 2 techniques. Varus and external tibial rotation laxity of the knee were measured while applying 10-N·m varus and 5-N·m external rotatory torques at 0°, 30°, 60°, and 90° of flexion. These measurements were tested under 3 conditions: (1) intact fibular collateral ligament, popliteal tendon, and popliteofibular ligament; (2) complete transection of the fibular collateral ligament, popliteal tendon, and popliteofibular ligament; (3) after PLC reconstruction with either the modified (n = 8) or the original (n = 8) technique. RESULTS: After PLC reconstruction, varus laxity was restored with no statistically significant differences from the intact condition after both reconstruction techniques. Similar outcomes were observed for external rotation in extension; however, in terms of the external rotation limit with respect to the intact joint, significant reductions of mean ± SD 4.1°± 6.3° (P = .036) and 5.1°± 6.6° (P = .016) were recorded with the modified technique at 60° and 90° of flexion, respectively. No significant effect was observed on the neutral flexion kinematics from 0° to 90° of flexion, and no significant differences were observed between reconstructions (P = .222). CONCLUSION: Both PLC reconstruction techniques restored the normal native varus as compared with the intact knee. Although the modified technique constrained end-range external rotation at 60° and 90° of flexion, no differences were noted with neutral flexion kinematics. Care should be taken when tensioning in the modified technique so that the tibia is in a neutral position to avoid overconstraining the knee. CLINICAL RELEVANCE: The modified technique may prove useful in situations where there are limited graft options, particularly where allografts are not available or are restricted.


Assuntos
Instabilidade Articular , Fenômenos Biomecânicos , Cadáver , Humanos , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular , Tendões/transplante
20.
J Orthop Res ; 40(3): 674-684, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33969537

RESUMO

Stress shielding of the proximal humerus following total shoulder arthroplasty (TSA) can promote unfavorable bone remodeling, especially for osteoporotic patients. The objective of this finite element (FE) study was to determine if a hollow, rather than solid, titanium stem can mitigate this effect for healthy, osteopenic, and osteoporotic bone. Using a population-based model of the humerus, representative average healthy, osteopenic, and osteoporotic humerus FE models were created. For each model, changes in bone and implant stresses following TSA were evaluated for different loading scenarios and compared between solid versus hollow-stemmed implants. For cortical bone, using an implant decreased von Mises stress with respect to intact values up to 34.4%, with a more pronounced effect at more proximal slices. In the most proximal slice, based on changes in strain energy density, hollow-stemmed implants outperformed solid-stemmed ones through reducing cortical bone volume with resorption potential by 11.7% ± 2.1% (p = .01). For cortical bone in this slice, the percentage of bone with resorption potential for the osteoporotic bone was greater than the healthy bone by 8.0% ± 1.4% using the hollow-stemmed implant (p = .04). These results suggest a small improvement in bone-implant mechanics using hollow-stemmed humeral implants and indicate osteoporosis could exacerbate stress shielding to some extent. The hollow stems maintained adequate strength and using even thinner walls may further reduce stress shielding. After further developing these models, future studies could yield optimized implant designs tuned for varying bone qualities.


Assuntos
Osteoporose , Ombro , Análise de Elementos Finitos , Humanos , Úmero/cirurgia , Osteoporose/cirurgia , Desenho de Prótese , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...