Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Commun Med (Lond) ; 4(1): 106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862781

RESUMO

BACKGROUND: Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS: To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS: Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION: Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.


Spaceflight is a hostile environment which can lead to health problems in astronauts, including in the skin. It is not currently well understood why these skin problems occur. Here, we analyzed data from the skin of space flown mice and astronauts to try and identify possible explanations for these skin problems. It appears that changes in the activation of genes related to damage to DNA, skin barrier health, and mitochondria (the energy-producing parts of cells) may play a role in these skin problems. Further research will be needed to confirm exactly how these changes influence skin health, which could lead to solutions for preventing and managing such issues in astronauts.

2.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693246

RESUMO

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

3.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353043

RESUMO

Many mammals hibernate during winter, reducing energy expenditure via bouts of torpor. The majority of a hibernator's energy reserves are used to fuel brief, but costly, arousals from torpor. Although arousals likely serve multiple functions, an important one is to restore water stores depleted during torpor. Many hibernating bat species require high humidity, presumably to reduce torpid water loss, but big brown bats (Eptesicus fuscus) appear tolerant of a wide humidity range. We tested the hypothesis that hibernating female E. fuscus use behavioural flexibility during torpor and arousals to maintain water balance and reduce energy expenditure. We predicted: (1) E. fuscus hibernating in dry conditions would exhibit more compact huddles during torpor and drink more frequently than bats in high humidity conditions; and (2) the frequency and duration of torpor bouts and arousals, and thus total loss of body mass would not differ between bats in the two environments. We housed hibernating E. fuscus in temperature- and humidity-controlled incubators at 50% or 98% relative humidity (8°C, 110 days). Bats in the dry environment maintained a more compact huddle during torpor and drank more frequently during arousals. Bats in the two environments had a similar number of arousals, but arousal duration was shorter in the dry environment. However, total loss of body mass over hibernation did not differ between treatments, indicating that the two groups used similar amounts of energy. Our results suggest that behavioural flexibility allows hibernating E. fuscus to maintain water balance and reduce energy costs across a wide range of hibernation humidities.


Assuntos
Quirópteros , Hibernação , Animais , Feminino , Umidade , Quirópteros/fisiologia , Hibernação/fisiologia , Nível de Alerta/fisiologia , Comportamento de Ingestão de Líquido , Água
4.
Cells ; 12(20)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887314

RESUMO

Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.


Assuntos
Proteínas de Caenorhabditis elegans , Voo Espacial , Humanos , Animais , Caenorhabditis elegans/metabolismo , Acetilcolina/metabolismo , Cálcio/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Distrofina/genética
5.
J Appl Physiol (1985) ; 135(5): 1135-1145, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823203

RESUMO

The ability of skeletal muscle to adapt to eccentric contractions has been suggested to be blunted in older muscle. If eccentric exercise is to be a safe and efficient training mode for older adults, preclinical studies need to establish if older muscle can effectively adapt and if not, determine the molecular signatures that are causing this impairment. The purpose of this study was to quantify the extent age impacts functional adaptations of muscle and identify genetic signatures associated with adaptation (or lack thereof). The anterior crural muscles of young (4 mo) and older (28 mo) female mice performed repeated bouts of eccentric contractions in vivo (50 contractions/wk for 5 wk) and isometric torque was measured across the initial and final bouts. Transcriptomics was completed by RNA-sequencing 1 wk following the fifth bout to identify common and differentially regulated genes. When torques post eccentric contractions were compared after the first and fifth bouts, young muscle exhibited a robust ability to adapt, increasing isometric torque 20%-36%, whereas isometric torque of older muscle decreased up to 18% (P ≤ 0.047). Using differential gene expression, young and older muscles shared some common transcriptional changes in response to eccentric exercise training, whereas other transcripts appeared to be age dependent. That is, the ability to express particular genes after repeated bouts of eccentric contractions was not the same between ages. These molecular signatures may reveal, in part, why older muscles do not appear to be as adaptive to exercise training as young muscles.NEW & NOTEWORTHY The ability to adapt to exercise training may help prevent and combat sarcopenia. Here, we demonstrate young mouse muscles get stronger whereas older mouse muscles become weaker after repeated bouts of eccentric contractions, and that numerous genes were differentially expressed between age groups following training. These results highlight that molecular and functional plasticity is not fixed in skeletal muscle with advancing age, and the ability to handle or cope with physical stress may be impaired.


Assuntos
Músculo Esquelético , Feminino , Animais , Camundongos , Músculo Esquelético/fisiologia , Torque
6.
Viruses ; 15(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37766234

RESUMO

Ebola virus is a zoonotic pathogen with a geographic range covering diverse ecosystems that are home to many potential reservoir species. Although researchers have detected Ebola virus RNA and serological evidence of previous infection in different rodents and bats, the infectious virus has not been isolated. The field is missing critical knowledge about where the virus is maintained between outbreaks, either because the virus is rarely encountered, overlooked during sampling, and/or requires specific unknown conditions that regulate viral expression. This study assessed adipose tissue as a previously overlooked tissue capable of supporting Ebola virus infection. Adipose tissue is a dynamic endocrine organ helping to regulate and coordinate homeostasis, energy metabolism, and neuroendocrine and immune functions. Through in vitro infection of human and bat (Eptesicus fuscus) brown adipose tissue cultures using wild-type Ebola virus, this study showed high levels of viral replication for 28 days with no qualitative indicators of cytopathic effects. In addition, alterations in adipocyte metabolism following long-term infection were qualitatively observed through an increase in lipid droplet number while decreasing in size, a harbinger of lipolysis or adipocyte browning. The finding that bat and human adipocytes are susceptible to Ebola virus infection has important implications for potential tissue tropisms that have not yet been investigated. Additionally, the findings suggest how the metabolism of this tissue may play a role in pathogenesis, viral transmission, and/or zoonotic spillover events.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Ecossistema , Ebolavirus/fisiologia , Tecido Adiposo , Linhagem Celular
7.
iScience ; 26(7): 107189, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456835

RESUMO

The application of omics to study Caenorhabditis elegans (C. elegans) in the context of spaceflight is increasing, illuminating the wide-ranging biological impacts of spaceflight on physiology. In this review, we highlight the application of omics, including transcriptomics, genomics, proteomics, multi-omics, and integrated omics in the study of spaceflown C. elegans, and discuss the impact, use, and future direction of this branch of research. We highlight the variety of molecular alterations that occur in response to spaceflight, most notably changes in metabolic and neuromuscular gene regulation. These transcriptional features are reproducible and evident across many spaceflown species (e.g., mice and astronauts), supporting the use of C. elegans as a model organism to study spaceflight physiology with translational capital. Integrating tissue-specific, spatial, and multi-omics approaches, which quantitatively link molecular responses to phenotypic adaptations, will facilitate the identification of candidate regulatory molecules for therapeutic intervention and thus represents the next frontiers in C. elegans space omics research.

8.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523525

RESUMO

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Assuntos
Proteínas de Caenorhabditis elegans , Sulfeto de Hidrogênio , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Sulfetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição GATA/metabolismo
9.
Res Sq ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798347

RESUMO

Spaceflight poses a unique set of challenges to humans and the hostile Spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on spaceflown murine transcriptomic datasets focused on the skin, biomedical profiles from fifty NASA astronauts, and confirmation via transcriptomic data from JAXA astronauts, the NASA Twins Study, and the first civilian commercial mission, Inspiration4. Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation were determined to be involved with skin health risks during Spaceflight. Additionally, a machine learning model was utilized to determine key genes driving Spaceflight response in the skin. These results can be used for determining potential countermeasures to mitigate Spaceflight damage to the skin.

10.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762426

RESUMO

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Assuntos
Acromegalia , Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Masculino , Feminino , Bovinos , Condrócitos/metabolismo , Acromegalia/metabolismo , Acromegalia/patologia , Microtomografia por Raio-X , Hormônio do Crescimento/metabolismo , Cartilagem Articular/metabolismo , Camundongos Transgênicos
11.
Geroscience ; 45(3): 1271-1287, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36161583

RESUMO

Resistance exercise training (RET) can counteract negative features of muscle ageing but older age associates with reduced adaptive capacity to RET. Altered muscle protein networks likely contribute to ageing RET adaptation; therefore, associated proteome-wide responses warrant exploration. We employed quantitative sarcoplasmic proteomics to compare age-related proteome and phosphoproteome responses to RET. Thigh muscle biopsies were collected from eight young (25 ± 1.1 years) and eight older (67.5 ± 2.6 years) adults before and after 20 weeks supervised RET. Muscle sarcoplasmic fractions were pooled for each condition and analysed using Isobaric Tags for Relative and Absolute Quantification (iTRAQ) labelling, tandem mass spectrometry and network-based hub protein identification. Older adults displayed impaired RET-induced adaptations in whole-body lean mass, body fat percentage and thigh lean mass (P > 0.05). iTRAQ identified 73 differentially expressed proteins with age and/or RET. Despite possible proteomic stochasticity, RET improved ageing profiles for mitochondrial function and glucose metabolism (top hub; PYK (pyruvate kinase)) but failed to correct altered ageing expression of cytoskeletal proteins (top hub; YWHAZ (14-3-3 protein zeta/delta)). These ageing RET proteomic profiles were generally unchanged or oppositely regulated post-RET in younger muscle. Similarly, RET corrected expression of 10 phosphoproteins altered in ageing, but these responses were again different vs. younger adults. Older muscle is characterised by RET-induced metabolic protein profiles that, whilst not present in younger muscle, improve untrained age-related proteomic deficits. Combined with impaired cytoskeletal adhesion responses, these results provide a proteomic framework for understanding and optimising ageing muscle RET adaptation.


Assuntos
Treinamento Resistido , Humanos , Idoso , Treinamento Resistido/métodos , Proteoma/metabolismo , Proteômica , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia
12.
J Proteome Res ; 22(1): 182-192, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36479878

RESUMO

White-nose syndrome (WNS)-positive little brown bats (Myotis lucifugus) may exhibit immune responses including increased cytokine and pro-inflammatory mediator gene levels. Bioactive lipid mediators (oxylipins) formed by enzymatic oxidation of polyunsaturated fatty acids can contribute to these immune responses, but have not been investigated in WNS pathophysiology. Nonenzymatic conversion of polyunsaturated fatty acids can also occur due to reactive oxygen species, however, these enantiomeric isomers will lack the same signaling properties. In this study, we performed a series of targeted lipidomic approaches on laboratory Pseudogymnoascus destructans-inoculated bats to assess changes in their splenic lipidome, including the formation of lipid mediators at early stages of WNS. Hepatic lipids previously identified were also resolved to a higher structural detail. We compared WNS-susceptible M. lucifugus to a WNS-resistant species, the big brown bat (Eptesicus fuscus). Altered splenic lipid levels were only observed in M. lucifugus. Differences in splenic free fatty acids included both omega-3 and omega-6 compounds. Increased levels of an enantiomeric monohydroxy DHA mixture were found, suggesting nonenzymatic formation. Changes in previously identified hepatic lipids were confined to omega-3 constituents. Together, these results suggest that increased oxidative stress, but not an inflammatory response, is occurring in bats at early stages of WNS that precedes fat depletion. These data have been submitted to metabolomics workbench and assigned a study number ST002304.


Assuntos
Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Lipidômica , Ácidos Graxos não Esterificados , Citocinas , Síndrome
13.
R Soc Open Sci ; 9(11): 211986, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425515

RESUMO

Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans (Pd). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd-infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro. We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host-pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases.

14.
Patterns (N Y) ; 3(10): 100550, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277820

RESUMO

Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight. We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods.

15.
J Comp Physiol B ; 192(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426856

RESUMO

Species with broad geographic ranges may experience varied environmental conditions throughout their range leading to local adaptation. Variation among populations reflects potential adaptability or plasticity, with implications for populations impacted by disease, climate change, and other anthropogenic influences. However, behavior may counteract divergent selection among populations. We studied intraspecific variation in hibernation physiology of Myotis lucifugus (little brown myotis) and Corynorhinus townsendii (Townsend's big-eared bat), two species of bats with large geographic ranges. We studied M. lucifugus at three hibernacula which spanned a latitudinal gradient of 1500 km, and C. townsendii from 6 hibernacula spread across 1200 km latitude and 1200 km longitude. We found no difference in torpid metabolic rate among populations of either species, nor was there a difference in the effect of ambient temperature among sites. Evaporative water loss was similar among populations of both species, with the exception of one C. townsendii pairwise site difference and one M. lucifugus site that differed from the others. We suggest the general lack of geographic variation is a consequence of behavioral microhabitat selection. As volant animals, bats can travel relatively long distances in search of preferred microclimates for hibernation. Despite dramatic macroclimate differences among populations, hibernating bats are able to find preferred microclimate conditions within their range, resulting in similar selection pressures among populations spread across wide geographic ranges.


Assuntos
Quirópteros , Hibernação , Adaptação Fisiológica , Animais , Quirópteros/fisiologia , Hibernação/fisiologia , Microclima
16.
Sci Rep ; 11(1): 23930, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907264

RESUMO

Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.


Assuntos
Adaptação Fisiológica , Exercício Físico , Contração Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Humanos , Masculino
17.
Stem Cell Reports ; 16(12): 3020-3035, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34767750

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor ß (TGF-ß) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFß signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Degeneração Neural/genética , Análise de Célula Única , Superóxido Dismutase-1/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
18.
Sci Rep ; 11(1): 20759, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675252

RESUMO

Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


Assuntos
Quirópteros/fisiologia , Hibernação , Perda Insensível de Água , Animais , Regulação da Temperatura Corporal , Metabolismo Energético , Temperatura , Água/metabolismo
19.
FASEB J ; 35(9): e21830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342902

RESUMO

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Doenças Musculares/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Adulto , Humanos , Masculino , Força Muscular/genética , Adulto Jovem
20.
Sci Rep ; 11(1): 11581, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078939

RESUMO

White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Micoses/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...