Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(7): e0181140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700683

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0125185.].

2.
Acta Neuropathol Commun ; 4: 30, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036546

RESUMO

The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK ((+/-))). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK ((+/-)) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK ((+/-)) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic manifestation of metabolic stress and therefore amenable to therapeutic intervention.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Guanilato Quinases/metabolismo , Mutação/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Composição Corporal/genética , Peso Corporal/genética , Encéfalo/patologia , Citosol/metabolismo , Feminino , Glucose/metabolismo , Guanilato Quinases/genética , Células HEK293 , Humanos , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Camundongos , Camundongos Transgênicos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Consumo de Oxigênio/genética , Fenótipo , Sinaptossomos/metabolismo
3.
Cell Mol Life Sci ; 73(18): 3599-621, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27015872

RESUMO

CASK, a MAGUK family protein, is an essential protein present in the presynaptic compartment. CASK's cellular role is unknown, but it interacts with multiple proteins important for synapse formation and function, including neurexin, liprin-α, and Mint1. CASK phosphorylates neurexin in a divalent ion-sensitive manner, although the functional relevance of this activity is unclear. Here we find that liprin-α and Mint1 compete for direct binding to CASK, but neurexin1ß eliminates this competition, and all four proteins form a complex. We describe a novel mode of interaction between liprin-α and CASK when CASK is bound to neurexin1ß. We show that CASK phosphorylates neurexin, modulating the interaction of liprin-α with the CASK-neurexin1ß-Mint1 complex. Thus, CASK creates a regulatory and structural link between the presynaptic adhesion molecule neurexin and active zone organizer, liprin-α. In neuronal culture, CASK appears to regulate the stability of neurexin by linking it with this multi-protein presynaptic active zone complex.


Assuntos
Guanilato Quinases/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Guanilato Quinases/química , Guanilato Quinases/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Neurônios/citologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
4.
PLoS One ; 10(4): e0125185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928229

RESUMO

Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Mitocôndrias/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...