Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645103

RESUMO

Collision of a replication fork with a DNA nick is thought to generate a one-ended break, fostering genomic instability. Collision of the opposing converging fork with the nick could, in principle, form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. Flp-nickase-induced HR entails two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR induced by a replication-independent break and by the Flp-nickase differ in their dependence on BRCA1 . To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a site-specific Tus/ Ter replication fork barrier. Flp-nickase-induced STGC remained robust and two-ended. Thus, collision of a single replication fork with a Flp-nick can trigger two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of a nicked DNA template.

2.
STAR Protoc ; 3(3): 101529, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35928003

RESUMO

Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) even with optimization may give low signal-to-background ratio and spatial resolution. Here, we adapted Cleavage Under Targets and Release Using Nuclease (CUT&RUN) (originally developed by the Henikoff group) to develop CUT&RUN-qPCR. By studying the recruitment of selected proteins (but amenable to other proteins), we find that CUT&RUN-qPCR is more sensitive and gives better spatial resolution than ChIP-qPCR. For complete details on the use and execution of this protocol, please refer to Skene et al. (2018) and Skene and Henikoff (2017).


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Cromossomos/metabolismo , Endonucleases , Nuclease do Micrococo/metabolismo
3.
Nat Struct Mol Biol ; 29(8): 801-812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941380

RESUMO

Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2'-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process.


Assuntos
Anemia de Fanconi , Recombinação Homóloga , Animais , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Endonucleases/genética , Endonucleases/metabolismo , Anemia de Fanconi/metabolismo , Camundongos
4.
STAR Protoc ; 3(3): 101551, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042887

RESUMO

In this protocol, we use CRISPR/Cas9 to generate large deletions of the entire coding region of a gene of interest, generating a hemizygous cell line. Next, we systematically engineer precise in-frame deletions within the intact wild-type allele, facilitating study of multi-domain proteins. The optimized protocol described here allows us to rapidly screen for effective sgRNA pairs and to engineer either an in-frame deletion or a frameshift mutation in high frequencies in mouse embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Panday et al. (2021).


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Murinas , Animais , Sistemas CRISPR-Cas/genética , Camundongos , Deleção de Sequência
5.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597596

RESUMO

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Assuntos
Proteína BRCA2/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/metabolismo , Fatores de Transcrição/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Ácido Mevalônico , Camundongos , Complexos Multiproteicos , Mutação , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinação Genética
6.
Curr Opin Genet Dev ; 71: 154-162, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464818

RESUMO

Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.


Assuntos
DNA Helicases , Replicação do DNA , Cromossomos , DNA Helicases/genética , Replicação do DNA/genética
7.
Mol Cell ; 81(11): 2428-2444.e6, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33882298

RESUMO

Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.


Assuntos
Proteína BRCA1/genética , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , Células-Tronco Embrionárias Murinas/metabolismo , Mutações Sintéticas Letais , Animais , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Linhagem Celular , Células Clonais , DNA Helicases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Ubiquitinação
8.
Methods Mol Biol ; 2153: 329-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840790

RESUMO

Site-specific replication fork barriers (RFBs) have proven valuable tools for studying mechanisms of repair at sites of replication fork stalling in prokaryotes and yeasts. We adapted the Escherichia coli Tus-Ter RFB for use in mammalian cells and used it to trigger site-specific replication fork stalling and homologous recombination (HR) at a defined chromosomal locus in mammalian cells. By comparing HR responses induced at the Tus-Ter RFB with those induced by a site-specific double-strand break (DSB), we have begun to uncover how the mechanisms of mammalian stalled fork repair differ from those underlying the repair of a replication-independent DSB. Here, we outline how to transiently express the Tus protein in mES cells, how to use flow cytometry to score conservative and aberrant repair outcomes, and how to quantify distinct repair outcomes in response to replication fork stalling at the inducible Tus-Ter chromosomal RFB.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Citometria de Fluxo , Recombinação Homóloga , Camundongos , Células-Tronco Embrionárias Murinas/química , Transfecção
9.
Cancer Res ; 80(14): 3033-3045, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193285

RESUMO

PARP inhibitor monotherapies are effective to treat patients with breast, ovary, prostate, and pancreatic cancer with BRCA1 mutations, but not to the much more frequent BRCA wild-type cancers. Searching for strategies that would extend the use of PARP inhibitors to BRCA1-proficient tumors, we found that the stability of BRCA1 protein following ionizing radiation (IR) is maintained by postphosphorylational prolyl-isomerization adjacent to Ser1191 of BRCA1, catalyzed by prolyl-isomerase Pin1. Extinction of Pin1 decreased homologous recombination (HR) to the level of BRCA1-deficient cells. Pin1 stabilizes BRCA1 by preventing ubiquitination of Lys1037 of BRCA1. Loss of Pin1, or introduction of a BRCA1-mutant refractory to Pin1 binding, decreased the ability of BRCA1 to localize to repair foci and augmented IR-induced DNA damage. In vitro growth of HR-proficient breast, prostate, and pancreatic cancer cells were modestly repressed by olaparib or Pin1 inhibition using all-trans retinoic acid (ATRA), while combination treatment resulted in near-complete block of cell proliferation. In MDA-MB-231 xenografts and triple-negative breast cancer patient-derived xenografts, either loss of Pin1 or ATRA treatment reduced BRCA1 expression and sensitized breast tumors to olaparib. Together, our study reveals that Pin1 inhibition, with clinical widely used ATRA, acts as an effective HR disrupter that sensitizes BRCA1-proficient tumors to PARP inhibition. SIGNIFICANCE: PARP inhibitors have been limited to treat homologous recombination-deficient tumors. All-trans retinoic acid, by inhibiting Pin1 and destabilizing BRCA1, extends benefit of PARP inhibitors to patients with homologous recombination-proficient tumors.See related commentary by Cai, p. 2977.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas , Proteína BRCA1/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
10.
Nat Rev Mol Cell Biol ; 20(11): 698-714, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31263220

RESUMO

The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Instabilidade Genômica , Animais , Humanos
11.
PLoS Genet ; 14(7): e1007486, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024881

RESUMO

Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Autoantígeno Ku/metabolismo , Rad51 Recombinase/metabolismo , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Autoantígeno Ku/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas , Mutação , Rad51 Recombinase/genética , DNA Polimerase teta
12.
Nature ; 551(7682): 590-595, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168504

RESUMO

Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tus-Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Replicação do DNA/genética , Sequências de Repetição em Tandem/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Animais , Proteína BRCA1 , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias , Feminino , Genes Reporter , Recombinação Homóloga , Humanos , Camundongos , Neoplasias Ovarianas/genética , Deleção de Sequência , Proteínas Supressoras de Tumor/metabolismo
13.
Sci Rep ; 7: 44662, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317934

RESUMO

DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Células HeLa , Histonas/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Humanos , Masculino , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , Rad51 Recombinase/metabolismo , Radiação Ionizante , Proteína de Replicação A/metabolismo
15.
PLoS Genet ; 12(11): e1006410, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27832076

RESUMO

A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Neoplasias Ovarianas/genética , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Cromátides/genética , Reparo do DNA por Junção de Extremidades/genética , Feminino , Conversão Gênica/genética , Instabilidade Genômica/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Neoplasias Ovarianas/patologia
16.
Mol Cell ; 63(4): 542-544, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27540853

RESUMO

Using a combination of genetics and cellular DNA rejoining assays, in this issue of Molecular Cell, Wyatt et al. (2016) demonstrate a critical role for mammalian DNA polymerase θ in the rejoining of DNA ends that are poor substrates for classical non-homologous end joining.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Animais , DNA/genética , Reparo do DNA por Junção de Extremidades , Humanos , DNA Polimerase teta
17.
Proc Natl Acad Sci U S A ; 113(26): E3676-85, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298342

RESUMO

The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.


Assuntos
Dano ao DNA , Fase S , Schizosaccharomyces/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Metanossulfonato de Metila/toxicidade , Fase S/efeitos dos fármacos , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Cell Cycle ; 15(14): 1812-20, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27136113

RESUMO

The Escherichia coli replication fork arrest complex Tus/Ter mediates site-specific replication fork arrest and homologous recombination (HR) on a mammalian chromosome, inducing both conservative "short tract" gene conversion (STGC) and error-prone "long tract" gene conversion (LTGC) products. We showed previously that bidirectional fork arrest is required for the generation of STGC products at Tus/Ter-stalled replication forks and that the HR mediators BRCA1, BRCA2 and Rad51 mediate STGC but suppress LTGC at Tus/Ter-arrested forks. Here, we report the impact of Ter array length on Tus/Ter-induced HR, comparing HR reporters containing arrays of 6, 9, 15 or 21 Ter sites-each targeted to the ROSA26 locus of mouse embryonic stem (ES) cells. Increasing Ter copy number within the array beyond 6 did not affect the magnitude of Tus/Ter-induced HR but biased HR in favor of LTGC. A "lock"-defective Tus mutant, F140A, known to exhibit higher affinity than wild type (wt)Tus for duplex Ter, reproduced these effects. In contrast, increasing Ter copy number within the array reduced HR induced by the I-SceI homing endonuclease, but produced no consistent bias toward LTGC. Thus, the mechanisms governing HR at Tus/Ter-arrested replication forks are distinct from those governing HR at an enzyme-induced chromosomal double strand break (DSB). We propose that increased spatial separation of the 2 arrested forks encountering an extended Tus/Ter barrier impairs the coordination of DNA ends generated by the processing of the stalled forks, thereby favoring aberrant LTGC over conservative STGC.


Assuntos
Sítios de Ligação Microbiológicos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Complexos Multienzimáticos/metabolismo , Animais , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Camundongos , Modelos Biológicos , Proteínas Mutantes/metabolismo
19.
Mol Cell ; 60(2): 280-93, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474068

RESUMO

We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells.


Assuntos
Reparo do DNA , Replicação do DNA , DNA/genética , Subunidades Proteicas/genética , Proteína de Replicação A/genética , Ubiquitina-Proteína Ligases/genética , Cromatina/química , Cromatina/metabolismo , DNA/química , Dano ao DNA , Células HeLa , Recombinação Homóloga , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteína de Replicação A/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Trends Cancer ; 1(4): 217-230, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26726318

RESUMO

Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...