Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890560

RESUMO

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Assuntos
Festuca , Lolium , Fenótipo , Sementes , Lolium/crescimento & desenvolvimento , Lolium/genética , Lolium/anatomia & histologia , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/anatomia & histologia
2.
F1000Res ; 11: 12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636476

RESUMO

With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.


Assuntos
Melhoramento Vegetal , Plantas , Software , Fenótipo
3.
G3 (Bethesda) ; 10(9): 3347-3364, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727925

RESUMO

The natural genetic diversity of agricultural species is an essential genetic resource for breeding programs aiming to improve their ecosystem and production services. A large natural ecotype diversity is usually available for most grassland species. This could be used to recombine natural climatic adaptations and agronomic value to create improved populations of grassland species adapted to future regional climates. However describing natural genetic resources can be long and costly. Molecular markers may provide useful information to help this task. This opportunity was investigated for Lolium perenne L., using a set of 385 accessions from the natural diversity of this species collected right across Europe and provided by genebanks of several countries. For each of these populations, genotyping provided the allele frequencies of 189,781 SNP markers. GWAS were implemented for over 30 agronomic and/or putatively adaptive traits recorded in three climatically contrasted locations (France, Belgium, Germany). Significant associations were detected for hundreds of markers despite a strong confounding effect of the genetic background; most of them pertained to phenology traits. It is likely that genetic variability in these traits has had an important contribution to environmental adaptation and ecotype differentiation. Genomic prediction models calibrated using natural diversity were found to be highly effective to describe natural populations for almost all traits as well as commercial synthetic populations for some important traits such as disease resistance, spring growth or phenological traits. These results will certainly be valuable information to help the use of natural genetic resources of other species.


Assuntos
Lolium , Ecossistema , Europa (Continente) , Variação Genética , Genótipo , Alemanha , Pradaria , Lolium/genética , Melhoramento Vegetal
4.
Front Plant Sci ; 9: 1142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131820

RESUMO

Boron (B) is an essential micronutrient for seed plants. Information on B-efficiency mechanisms and B-efficient crop and model plant genotypes is very scarce. Studies evaluating the basis and consequences of B-deficiency and B-efficiency are limited by the facts that B occurs as a trace contaminant essentially everywhere, its bioavailability is difficult to control and soil-based B-deficiency growth systems allowing a high-throughput screening of plant populations have hitherto been lacking. The crop plant Brassica napus shows a very high sensitivity toward B-deficient conditions. To reduce B-deficiency-caused yield losses in a sustainable manner, the identification of B-efficient B. napus genotypes is indispensable. We developed a soil substrate-based cultivation system which is suitable to study plant growth in automated high-throughput phenotyping facilities under defined and repeatable soil B conditions. In a comprehensive screening, using this system with soil B concentrations below 0.1 mg B (kg soil)-1, we identified three highly B-deficiency tolerant B. napus cultivars (CR2267, CR2280, and CR2285) among a genetically diverse collection comprising 590 accessions from all over the world. The B-efficiency classification of cultivars was based on a detailed assessment of various physical and high-throughput imaging-based shoot and root growth parameters in soil substrate or in in vitro conditions, respectively. We identified cultivar-specific patterns of B-deficiency-responsive growth dynamics. Elemental analysis revealed striking differences only in B contents between contrasting genotypes when grown under B-deficient but not under standard conditions. Results indicate that B-deficiency tolerant cultivars can grow with a very limited amount of B which is clearly below previously described critical B-tissue concentration values. These results suggest a higher B utilization efficiency of CR2267, CR2280, and CR2285 which would represent a unique trait among so far identified B-efficient B. napus cultivars which are characterized by a higher B-uptake capacity. Testing various other nutrient deficiency treatments, we demonstrated that the tolerance is specific for B-deficient conditions and is not conferred by a general growth vigor at the seedling stage. The identified B-deficiency tolerant cultivars will serve as genetic and physiological "tools" to further understand the mechanisms regulating the B nutritional status in rapeseed and to develop B-efficient elite genotypes.

5.
Glob Chang Biol ; 22(1): 449-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26426898

RESUMO

Within-species and among-species differences in growth responses to a changing climate have been well documented, yet the relative magnitude of within-species vs. among-species variation has remained largely unexplored. This missing comparison impedes our ability to make general predictions of biodiversity change and to project future species distributions using models. We present a direct comparison of among- versus within-species variation in response to three of the main stresses anticipated with climate change: drought, warming, and frost. Two earlier experiments had experimentally induced (i) summer drought and (ii) spring frost for four common European grass species and their ecotypes from across Europe. To supplement existing data, a third experiment was carried out, to compare variation among species from different functional groups to within-species variation. Here, we simulated (iii) winter warming plus frost for four grasses, two nonleguminous, and two leguminous forbs, in addition to eleven European ecotypes of the widespread grass Arrhenatherum elatius. For each experiment, we measured: (i) C/N ratio and biomass, (ii) chlorophyll content and biomass, and (iii) plant greenness, root (15) N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among-species variation for each seed origin (five countries). Of the six significant differences, within-species CVs were higher than among-species CVs in four cases. Partitioning of variance within each treatment in two of the three experiments showed that within-species variability (ecotypes) could explain an additional 9% of response variation after accounting for the among-species variation. Our observation that within-species variation was generally as high as among-species variation emphasizes the importance of including both within- and among-species variability in ecological theory (e.g., the insurance hypothesis) and for practical applications (e.g., biodiversity conservation).


Assuntos
Ecótipo , Desenvolvimento Vegetal/fisiologia , Plantas/genética , Temperatura , Adaptação Fisiológica , Biodiversidade , Biomassa , Carbono/análise , Clorofila/análise , Mudança Climática , Secas , Variação Genética , Nitrogênio/análise , Raízes de Plantas/metabolismo
6.
Theor Appl Genet ; 120(6): 1151-62, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20049414

RESUMO

The use of local provenances in restoration, agriculture and forestry has been identified as measure to sustain biological diversity and to improve local productivity. However, the delineation of regional provenances is challenging because it requires the identification of well-defined groups based on spatiogenetic differentiation and/or the evidence of local adaptation. In this study, we investigate genetic variation at 186 AFLP loci in 46 European accessions of the important grassland species Arrhenatherum elatius and ask (1) whether genetic variation within accessions differs between European geographical regions; (2) at which spatial scale populations are structured across Europe and (3) whether putatively adaptive markers contribute to this pattern and whether these markers can be related to climatic site conditions. Basic expectations of population genetics are likely to be altered in autotetraploid species, thus, we adopted a band-based approach to estimate genetic diversity and structuring. Compared to other grasses A. elatius showed high genetic diversity and considerable differentiation among accessions (Phi(ST) = 0.24). Accessions separated in a Western European and a Central/Eastern European group, without further structure within groups. A genome scan approach identified four potentially adaptive loci, whose band frequencies correlated significantly with climatic parameters, suggesting that genetic differentiation in A. elatius is also the result of adaptive processes. Knowledge on adaptive loci might in the long run also help to adapt ecosystems to adverse climate change effects through assisted migration of ecotypes rather than introduction of new species.


Assuntos
Variação Genética , Poaceae/genética , Poliploidia , Seleção Genética , Adaptação Fisiológica/genética , Loci Gênicos/genética , Genética Populacional , Geografia , Modelos Logísticos , Filogenia , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...