Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 14(1): 210, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717729

RESUMO

BACKGROUND: The members of the genus Caldicellulosiruptor have the potential for future integration into a biorefinery system due to their capacity to generate hydrogen close to the theoretical limit of 4 mol H2/mol hexose, use a wide range of sugars and can grow on numerous lignocellulose hydrolysates. However, members of this genus are unable to survive in high sugar concentrations, limiting their ability to grow on more concentrated hydrolysates, thus impeding their industrial applicability. In this study five members of this genus, C. owensensis, C. kronotskyensis, C. bescii, C. acetigenus and C. kristjanssonii, were developed to tolerate higher sugar concentrations through an adaptive laboratory evolution (ALE) process. The developed mixed population C. owensensis CO80 was further studied and accompanied by the development of a kinetic model based on Monod kinetics to quantitatively compare it with the parental strain. RESULTS: Mixed populations of Caldicellulosiruptor tolerant to higher glucose concentrations were obtained with C. owensensis adapted to grow up to 80 g/L glucose; other strains in particular C. kristjanssonii demonstrated a greater restriction to adaptation. The C. owensensis CO80 mixed population was further studied and demonstrated the ability to grow in glucose concentrations up to 80 g/L glucose, but with reduced volumetric hydrogen productivities ([Formula: see text]) and incomplete sugar conversion at elevated glucose concentrations. In addition, the carbon yield decreased with elevated concentrations of glucose. The ability of the mixed population C. owensensis CO80 to grow in high glucose concentrations was further described with a kinetic growth model, which revealed that the critical sugar concentration of the cells increased fourfold when cultivated at higher concentrations. When co-cultured with the adapted C. saccharolyticus G5 mixed culture at a hydraulic retention time (HRT) of 20 h, C. owensensis constituted only 0.09-1.58% of the population in suspension. CONCLUSIONS: The adaptation of members of the Caldicellulosiruptor genus to higher sugar concentrations established that the ability to develop improved strains via ALE is species dependent, with C. owensensis adapted to grow on 80 g/L, whereas C. kristjanssonii could only be adapted to 30 g/L glucose. Although C. owensensis CO80 was adapted to a higher sugar concentration, this mixed population demonstrated reduced [Formula: see text] with elevated glucose concentrations. This would indicate that while ALE permits adaptation to elevated sugar concentrations, this approach does not result in improved fermentation performances at these higher sugar concentrations. Moreover, the observation that planktonic mixed culture of CO80 was outcompeted by an adapted C. saccharolyticus, when co-cultivated in continuous mode, indicates that the robustness of CO80 mixed culture should be improved for industrial application.

2.
Microorganisms ; 8(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932830

RESUMO

The use of straw for biofuel production is encouraged by the European Union. A previous study showed the feasibility of producing biomethane in upflow anaerobic sludge blanket (UASB) reactors using hydrolyzed, steam-pretreated wheat straw, before and after dark fermentation with Caldicellulosiruptor saccharolyticus, and lucerne. This study provides information on overall microbial community development in those UASB processes and changes related to acidification. The bacterial and archaeal community in granular samples was analyzed using high-throughput amplicon sequencing. Anaerobic digestion model no. 1 (ADM1) was used to predict the abundance of microbial functional groups. The sequencing results showed decreased richness and diversity in the microbial community, and decreased relative abundance of bacteria in relation to archaea, after process acidification. Canonical correspondence analysis showed significant negative correlations between the concentration of organic acids and three phyla, and positive correlations with seven phyla. Organic loading rate and total COD fed also showed significant correlations with microbial community structure, which changed over time. ADM1 predicted a decrease in acetate degraders after a decrease to pH ≤ 6.5. Acidification had a sustained effect on the microbial community and process performance.

3.
Biotechnol Biofuels ; 11: 281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337960

RESUMO

BACKGROUND: Current EU directives demand increased use of renewable fuels in the transportation sector but restrict governmental support for production of biofuels produced from crops. The use of intercropped lucerne and wheat may comply with the directives. In the current study, the combination of ensiled lucerne (Medicago sativa L.) and wheat straw as substrate for hydrogen and methane production was investigated. Steam-pretreated and enzymatically hydrolysed wheat straw [WSH, 76% of total chemical oxygen demand (COD)] and ensiled lucerne (LH, 24% of total COD) were used for sequential hydrogen production through dark fermentation and methane production through anaerobic digestion and directly for anaerobic digestion. Synthetic co-cultures of extreme thermophilic Caldicellulosiruptor species adapted to elevated osmolalities were used for dark fermentation. RESULTS: Based on 6 tested steam pretreatment conditions, 5 min at 200 °C was chosen for the ensiled lucerne. The same conditions as applied for wheat straw (10 min at 200 °C with 1% acetic acid) would give similar sugar yields. Volumetric hydrogen productivities of 6.7 and 4.3 mmol/L/h and hydrogen yields of 1.9 and 1.8 mol/mol hexose were observed using WSH and the combination of WSH and LH, respectively, which were relatively low compared to those of the wild-type strains. The combinations of WSH plus LH and the effluent from dark fermentation of WSH plus LH were efficiently converted to methane in anaerobic digestion with COD removal of 85-89% at organic loading rates of COD 5.4 and 8.5 g/L/day, respectively, in UASB reactors. The nutrients in the combined hydrolysates could support this conversion. CONCLUSIONS: This study demonstrates the possibility of reducing the water addition to WSH by 26% and the phosphorus addition by 80% in dark fermentation with Caldicellulosiruptor species, compared to previous reports. WSH and combined WSH and LH were well tolerated by osmotolerant co-cultures. The yield was not significantly different when using defined media or hydrolysates with the same concentrations of sugars. However, the sugar concentration was negatively correlated with the hydrogen yield when comparing the results to previous reports. Hydrolysates and effluents from dark fermentation can be efficiently converted to methane. Lucerne can serve as macronutrient provider in anaerobic digestion. Intercropping with wheat is promising.

4.
Biotechnol Biofuels ; 11: 175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977336

RESUMO

BACKGROUND: Caldicellulosiruptor saccharolyticus is an attractive hydrogen producer suitable for growth on various lignocellulosic substrates. The aim of this study was to quantify uptake of pentose and hexose monosaccharides in an industrial substrate and to present a kinetic growth model of C. saccharolyticus that includes sugar uptake on defined and industrial media. The model is based on Monod and Hill kinetics extended with gas-to-liquid mass transfer and a cybernetic approach to describe diauxic-like growth. RESULTS: Mathematical expressions were developed to describe hydrogen production by C. saccharolyticus consuming glucose, xylose, and arabinose. The model parameters were calibrated against batch fermentation data. The experimental data included four different cases: glucose, xylose, sugar mixture, and wheat straw hydrolysate (WSH) fermentations. The fermentations were performed without yeast extract. The substrate uptake rate of C. saccharolyticus on single sugar-defined media was higher on glucose compared to xylose. In contrast, in the defined sugar mixture and WSH, the pentoses were consumed faster than glucose. Subsequently, the cultures entered a lag phase when all pentoses were consumed after which glucose uptake rate increased. This phenomenon suggested a diauxic-like behavior as was deduced from the successive appearance of two peaks in the hydrogen and carbon dioxide productivity. The observation could be described with a modified diauxic model including a second enzyme system with a higher affinity for glucose being expressed when pentose saccharides are consumed. This behavior was more pronounced when WSH was used as substrate. CONCLUSIONS: The previously observed co-consumption of glucose and pentoses with a preference for the latter was herein confirmed. However, once all pentoses were consumed, C. saccharolyticus most probably expressed another uptake system to account for the observed increased glucose uptake rate. This phenomenon could be quantitatively captured in a kinetic model of the entire diauxic-like growth process. Moreover, the observation indicates a regulation system that has fundamental research relevance, since pentose and glucose uptake in C. saccharolyticus has only been described with ABC transporters, whereas previously reported diauxic growth phenomena have been correlated mainly to PTS systems for sugar uptake.

5.
Microb Cell Fact ; 10: 111, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22189215

RESUMO

BACKGROUND: Caldicellulosiruptor saccharolyticus has the ability to produce hydrogen (H2) at high yields from a wide spectrum of carbon sources, and has therefore gained industrial interest. For a cost-effective biohydrogen process, the ability of an organism to tolerate high partial pressures of H2 (PH2) is a critical aspect to eliminate the need for continuous stripping of the produced H2 from the bioreactor. RESULTS: Herein, we demonstrate that, under given conditions, growth and H2 production in C. saccharolyticus can be sustained at PH2 up to 67 kPa in a chemostat. At this PH2, 38% and 16% of the pyruvate flux was redirected to lactate and ethanol, respectively, to maintain a relatively low cytosolic NADH/NAD ratio (0.12 mol/mol). To investigate the effect of the redox ratio on the glycolytic flux, a kinetic model describing the activity of the key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was developed. Indeed, at NADH/NAD ratios of 0.12 mol/mol (Ki of NADH = 0.03 ± 0.01 mM) GAPDH activity was inhibited by only 50% allowing still a high glycolytic flux (3.2 ± 0.4 mM/h). Even at high NADH/NAD ratios up to 1 mol/mol the enzyme was not completely inhibited. During batch cultivations, hydrogen tolerance of C. saccharolyticus was dependent on the growth phase of the organism as well as the carbon and energy source used. The obtained results were analyzed, based on thermodynamic and enzyme kinetic considerations, to gain insight in the mechanism underlying the unique ability of C. saccharolyticus to grow and produce H2 under relatively high PH2. CONCLUSION: C. saccharolyticus is able to grow and produce hydrogen at high PH2, hence eliminating the need of gas sparging in its cultures. Under this condition, it has a unique ability to fine tune its metabolism by maintaining the glycolytic flux through regulating GAPDH activity and redistribution of pyruvate flux. Concerning the later, xylose-rich feedstock should be preferred over the sucrose-rich one for better H2 yield.


Assuntos
Hidrogênio/metabolismo , Thermoanaerobacter/metabolismo , Metabolismo Energético , Pressão Parcial , Termodinâmica
6.
Biotechnol Biofuels ; 4(1): 31, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21914204

RESUMO

BACKGROUND: Caldicellulosiruptor saccharolyticus has attracted increased interest as an industrial hydrogen (H2) producer. The aim of the present study was to develop a kinetic growth model for this extreme thermophile. The model is based on Monod kinetics supplemented with the inhibitory effects of H2 and osmotic pressure, as well as the liquid-to-gas mass transfer of H2. RESULTS: Mathematical expressions were developed to enable the simulation of microbial growth, substrate consumption and product formation. The model parameters were determined by fitting them to experimental data. The derived model corresponded well with experimental data from batch fermentations in which the stripping rates and substrate concentrations were varied. The model was used to simulate the inhibition of growth by H2 and solute concentrations, giving a critical dissolved H2 concentration of 2.2 mmol/L and an osmolarity of 0.27 to 29 mol/L. The inhibition by H2, being a function of the dissolved H2 concentration, was demonstrated to be mainly dependent on H2 productivity and mass transfer rate. The latter can be improved by increasing the stripping rate, thereby allowing higher H2 productivity. The experimentally determined degree of oversaturation of dissolved H2 was 12 to 34 times the equilibrium concentration and was comparable to the values given by the model. CONCLUSIONS: The derived model is the first mechanistically based model for fermentative H2 production and provides useful information to improve the understanding of the growth behavior of C. saccharolyticus. The model can be used to determine optimal operating conditions for H2 production regarding the substrate concentration and the stripping rate.

7.
Extremophiles ; 15(1): 77-87, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21132340

RESUMO

Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellular electron flow were observed when cells were supplied with different carbon sources. A higher electrochemical response was detected when cells were supplied with xylose than with sucrose or glucose. Moreover, using the mediated electrochemical method, it was possible to detect differences in the electron flow between cells harvested in the exponential and stationary growth phases. The electron flow of C. saccharolyticus was dependent on the NADH- and reduced ferredoxin generation flux and the competitive behavior of cytosolic and membrane-associated oxidoreductases. Sodium oxamate was used to inhibit the NADH-dependent lactate dehydrogenase, upon which more NADH was directed to membrane-associated enzymes for ferricyanide reduction, leading to a higher electrochemical signal. The method is noninvasive and the results presented here demonstrate that this method can be used to accurately detect changes in the intracellular electron flow and to probe redox enzyme properties of a strictly anaerobic thermophile in vivo.


Assuntos
Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Hidrogênio/metabolismo , NAD/metabolismo , Oxirredutases/metabolismo , Anaerobiose/fisiologia , Oxirredução
8.
Microb Cell Fact ; 9: 89, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21092203

RESUMO

Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich substrates at yields close to the theoretical maximum of the dark fermentation process (i.e., 4 mol H2/mol hexose). The organism is able to ferment an array of mono-, di- and polysaccharides, and is relatively tolerant to high partial hydrogen pressures, making it a promising candidate for exploitation in a biohydrogen process. The behaviour of this Gram-positive bacterium bears all hallmarks of being adapted to an environment sparse in free sugars, which is further reflected in its low volumetric hydrogen productivity and low osmotolerance. These two properties need to be improved by at least a factor of 10 and 5, respectively, for a cost-effective industrial process. In this review, the physiological characteristics of C. saccharolyticus are analyzed in view of the requirements for an efficient hydrogen cell factory. A special emphasis is put on the tight regulation of hydrogen production in C. saccharolyticus by both redox and energy metabolism. Suggestions for strategies to overcome the current challenges facing the potential use of the organism in hydrogen production are also discussed.


Assuntos
Hidrogênio/metabolismo , Thermoanaerobacter/fisiologia , Metabolismo Energético , Hidrogenase/metabolismo , Enxofre/química , Thermoanaerobacter/enzimologia , Thermoanaerobacter/genética , Termodinâmica
9.
FEMS Microbiol Lett ; 307(1): 48-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20557574

RESUMO

The role of inorganic pyrophosphate (PPi) as an energy carrier in the central metabolism of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was investigated. In agreement with its annotated genome sequence, cell extracts were shown to exhibit PPi-dependent phosphofructokinase and pyruvate phosphate dikinase activity. In addition, membrane-bound pyrophosphatase activity was demonstrated, while no significant cytosolic pyrophosphatase activity was detected. During the exponential growth phase, high PPi levels (approximately 4 +/- 2 mM) and relatively low ATP levels (0.43 +/- 0.07 mM) were found, and the PPi/ATP ratio decreased 13-fold when the cells entered the stationary phase. Pyruvate kinase activity appeared to be allosterically affected by PPi. Altogether, these findings suggest an important role for PPi in the central energy metabolism of C. saccharolyticus.


Assuntos
Difosfatos/metabolismo , Metabolismo Energético , Bactérias Gram-Positivas/metabolismo , Hidrogênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Positivas/crescimento & desenvolvimento , Fosfofrutoquinases/metabolismo , Pirofosfatases/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo
10.
Metab Eng ; 12(3): 282-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060925

RESUMO

Caldicellulosiruptor saccharolyticus displays superior H(2) yields on a wide range of carbon sources provided that lactate formation is avoided. Nevertheless, a low lactate flux is initiated as the growth rate declined in the transition to the stationary phase, which coincides with a drastic decrease in the glucose consumption and acetate production fluxes. In addition, the decrease in growth rate was accompanied by a sudden increase and then decrease in NADH levels. The V'(MAX) of the lactate dehydrogenase (LDH) doubled when the cells entered the stationary phase. Kinetic analysis revealed that at the metabolic level LDH activity is regulated through (i) competitive inhibition by pyrophosphate (PPi, k(i)=1.7 mM) and NAD (k(i)=0.43 mM) and (ii) allosteric activation by FBP (300%), ATP (160%) and ADP (140%). From these data a MWC-based model was derived. Simulations with this model could explain the observed lactate shift by displaying how the sensitivity of LDH activity to NADH/NAD ratio varied with different PP(i) concentrations. Moreover, the activation of LDH by ATP indicates that C. saccharolyticus uses LDH as a means to adjusts its flux of ATP and NADH production. To our knowledge, this is the first time PPi is observed as an effector of LDH.


Assuntos
Ácido Láctico/metabolismo , Carbono/metabolismo , Difosfatos/metabolismo , Glucose/genética , Glucose/metabolismo , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Ácido Láctico/análise , NAD/genética , NAD/metabolismo , Fenômenos Físicos
11.
Appl Environ Microbiol ; 74(21): 6720-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18776029

RESUMO

Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos/genética , Enzimas/genética , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA