Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854068

RESUMO

The comorbidity of autism spectrum disorders and severe gastrointestinal symptoms is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence large-effect autism risk genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons as well as their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated pathogenic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen of these genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using the high-throughput diploid frog Xenopus tropicalis , we individually target five of these genes ( SYNGAP1, CHD8, SCN2A, CHD2 , and DYRK1A ) and observe disrupted enteric neuronal progenitor migration for each. More extensive analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo , which can be ameliorated by treatment with a selective serotonin reuptake inhibitor (escitalopram) or a serotonin receptor 6 agonist, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that increasing serotonin signaling may be a productive therapeutic avenue.

2.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38187634

RESUMO

Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.

3.
Nat Commun ; 14(1): 8077, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057346

RESUMO

Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Transtornos do Neurodesenvolvimento , Síndrome de Tourette , Humanos , Masculino , Feminino , Transtorno do Deficit de Atenção com Hiperatividade/genética , Síndrome de Tourette/genética , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética
4.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366052

RESUMO

Gene ontology analyses of high-confidence autism spectrum disorder (ASD) risk genes highlight chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated tubulin biology and cellular proliferation. As many chromatin regulators, including the ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ and KMT5B) specifically with respect to tubulin biology. We observe that all five localize to microtubules of the mitotic spindle in vitro in human cells and in vivo in Xenopus. Investigation of CHD2 provides evidence that mutations present in individuals with ASD cause a range of microtubule-related phenotypes, including disrupted localization of the protein at mitotic spindles, cell cycle stalling, DNA damage and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among tubulin-associated proteins, suggesting broader relevance. Together, these results provide additional evidence that the role of tubulin biology and cellular proliferation in ASD warrants further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno Autístico/complicações , Transtorno Autístico/metabolismo , Cromatina/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Tubulina (Proteína)/metabolismo , Histonas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
5.
Biol Psychiatry ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738982

RESUMO

BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder of complex genetic architecture and is characterized by multiple motor tics and at least one vocal tic persisting for more than 1 year. METHODS: We performed a genome-wide meta-analysis integrating a novel TS cohort with previously published data, resulting in a sample size of 6133 individuals with TS and 13,565 ancestry-matched control participants. RESULTS: We identified a genome-wide significant locus on chromosome 5q15. Integration of expression quantitative trait locus, Hi-C (high-throughput chromosome conformation capture), and genome-wide association study data implicated the NR2F1 gene and associated long noncoding RNAs within the 5q15 locus. Heritability partitioning identified statistically significant enrichment in brain tissue histone marks, while polygenic risk scoring of brain volume data identified statistically significant associations with right and left thalamus volumes and right putamen volume. CONCLUSIONS: Our work presents novel insights into the neurobiology of TS, thereby opening up new directions for future studies.

6.
Nat Rev Neurosci ; 23(6): 323-341, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440779

RESUMO

More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.


Assuntos
Transtorno do Espectro Autista , Neurociências , Transtorno do Espectro Autista/genética , Feminino , Genômica , Humanos , Masculino , Neurogênese , Neurônios
8.
Neuron ; 109(5): 788-804.e8, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497602

RESUMO

Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/crescimento & desenvolvimento , Estrogênios/fisiologia , Neurogênese , Animais , Transtorno do Espectro Autista/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Avaliação Pré-Clínica de Medicamentos , Estrogênios/administração & dosagem , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Fatores de Risco , Transdução de Sinais , Xenopus
10.
Development ; 147(21)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467234

RESUMO

DYRK1A [dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A] is a high-confidence autism risk gene that encodes a conserved kinase. In addition to autism, individuals with putative loss-of-function variants in DYRK1A exhibit microcephaly, intellectual disability, developmental delay and/or congenital anomalies of the kidney and urinary tract. DYRK1A is also located within the critical region for Down syndrome; therefore, understanding the role of DYRK1A in brain development is crucial for understanding the pathobiology of multiple developmental disorders. To characterize the function of this gene, we used the diploid frog Xenopus tropicalis We discover that Dyrk1a is expressed in ciliated tissues, localizes to ciliary axonemes and basal bodies, and is required for ciliogenesis. We also demonstrate that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression and cell death during brain development. These findings provide hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.


Assuntos
Encéfalo/anatomia & histologia , Cílios/metabolismo , Embrião não Mamífero/anatomia & histologia , Transtornos do Neurodesenvolvimento/genética , Organogênese/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas de Xenopus/genética , Xenopus/embriologia , Xenopus/genética , Animais , Encéfalo/embriologia , Ciclo Celular/genética , Sobrevivência Celular , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Tamanho do Órgão , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Risco , Fuso Acromático/metabolismo , Telencéfalo/anatomia & histologia , Proteínas de Xenopus/metabolismo
11.
Cell Rep ; 31(2): 107495, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294447

RESUMO

Tbr1 is a high-confidence autism spectrum disorder (ASD) gene encoding a transcription factor with distinct pre- and postnatal functions. Postnatally, Tbr1 conditional knockout (CKO) mutants and constitutive heterozygotes have immature dendritic spines and reduced synaptic density. Tbr1 regulates expression of several genes that underlie synaptic defects, including a kinesin (Kif1a) and a WNT-signaling ligand (Wnt7b). Furthermore, Tbr1 mutant corticothalamic neurons have reduced thalamic axonal arborization. LiCl and a GSK3ß inhibitor, two WNT-signaling agonists, robustly rescue the dendritic spines and the synaptic and axonal defects, suggesting that this could have relevance for therapeutic approaches in some forms of ASD.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/metabolismo , Espinhas Dendríticas/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Tálamo/metabolismo , Via de Sinalização Wnt/genética
12.
Biol Psychiatry ; 87(12): 1035-1044, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31771860

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants. METHODS: We performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways. RESULTS: DN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p = .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks. CONCLUSIONS: Our findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno Obsessivo-Compulsivo , Síndrome de Tourette , Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio , Criança , DNA , Proteínas de Ligação a DNA/genética , Humanos , Mutação , Transtorno Obsessivo-Compulsivo/genética , Síndrome de Tourette/genética , Fatores de Transcrição/genética
13.
Nat Med ; 25(5): 784-791, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061540

RESUMO

Owing to recent medical and technological advances in neonatal care, infants born extremely premature have increased survival rates1,2. After birth, these infants are at high risk of hypoxic episodes because of lung immaturity, hypotension and lack of cerebral-flow regulation, and can develop a severe condition called encephalopathy of prematurity3. Over 80% of infants born before post-conception week 25 have moderate-to-severe long-term neurodevelopmental impairments4. The susceptible cell types in the cerebral cortex and the molecular mechanisms underlying associated gray-matter defects in premature infants remain unknown. Here we used human three-dimensional brain-region-specific organoids to study the effect of oxygen deprivation on corticogenesis. We identified specific defects in intermediate progenitors, a cortical cell type associated with the expansion of the human cerebral cortex, and showed that these are related to the unfolded protein response and changes. Moreover, we verified these findings in human primary cortical tissue and demonstrated that a small-molecule modulator of the unfolded protein response pathway can prevent the reduction in intermediate progenitors following hypoxia. We anticipate that this human cellular platform will be valuable for studying the environmental and genetic factors underlying injury in the developing human brain.


Assuntos
Lesões Encefálicas/etiologia , Hipóxia Encefálica/etiologia , Modelos Neurológicos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/patologia , Lactente Extremamente Prematuro , Recém-Nascido , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Neurogênese/fisiologia , Organoides/metabolismo , Organoides/patologia , Proteínas com Domínio T/metabolismo , Resposta a Proteínas não Dobradas
15.
Science ; 362(6420)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545852

RESUMO

Whole-genome sequencing (WGS) has facilitated the first genome-wide evaluations of the contribution of de novo noncoding mutations to complex disorders. Using WGS, we identified 255,106 de novo mutations among sample genomes from members of 1902 quartet families in which one child, but not a sibling or their parents, was affected by autism spectrum disorder (ASD). In contrast to coding mutations, no noncoding functional annotation category, analyzed in isolation, was significantly associated with ASD. Casting noncoding variation in the context of a de novo risk score across multiple annotation categories, however, did demonstrate association with mutations localized to promoter regions. We found that the strongest driver of this promoter signal emanates from evolutionarily conserved transcription factor binding sites distal to the transcription start site. These data suggest that de novo mutations in promoter regions, characterized by evolutionary and functional signatures, contribute to ASD.


Assuntos
Transtorno do Espectro Autista/genética , Mutação , Regiões Promotoras Genéticas/genética , Sítios de Ligação/genética , Sequência Conservada , Análise Mutacional de DNA , Loci Gênicos , Variação Genética , Humanos , Linhagem , Risco , Fatores de Transcrição/metabolismo
16.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550790

RESUMO

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Membrana , Proteínas Nucleares , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
17.
Neuron ; 100(4): 831-845.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318412

RESUMO

An understanding of how heterozygous loss-of-function mutations in autism spectrum disorder (ASD) risk genes, such as TBR1, contribute to ASD remains elusive. Conditional Tbr1 deletion during late mouse gestation in cortical layer 6 neurons (Tbr1layer6 mutants) provides novel insights into its function, including dendritic patterning, synaptogenesis, and cell-intrinsic physiology. These phenotypes occur in heterozygotes, providing insights into mechanisms that may underlie ASD pathophysiology. Restoring expression of Wnt7b largely rescues the synaptic deficit in Tbr1layer6 mutant neurons. Furthermore, Tbr1layer6 heterozygotes have increased anxiety-like behavior, a phenotype seen ASD. Integrating TBR1 chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) data from layer 6 neurons and activity of TBR1-bound candidate enhancers provides evidence for how TBR1 regulates layer 6 properties. Moreover, several putative TBR1 targets are ASD risk genes, placing TBR1 in a central position both for ASD risk and for regulating transcriptional circuits that control multiple steps in layer 6 development essential for the assembly of neural circuits.


Assuntos
Proteínas de Ligação a DNA/genética , Dosagem de Genes/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Ligação a DNA/biossíntese , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/química , Rede Nervosa/química , Proteínas com Domínio T
18.
Cell Rep ; 24(13): 3441-3454.e12, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257206

RESUMO

We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk.


Assuntos
Caderinas/genética , Variações do Número de Cópias de DNA , Receptores de Superfície Celular/genética , Síndrome de Tourette/genética , Adulto , Polaridade Celular , Criança , Feminino , Humanos , Masculino , Linhagem , Síndrome de Tourette/patologia
19.
Cell ; 174(3): 505-520, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053424

RESUMO

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Assuntos
Mapeamento Cromossômico/métodos , Transtornos do Neurodesenvolvimento/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neurobiologia/métodos , Neuropsiquiatria
20.
Nat Genet ; 50(5): 727-736, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700473

RESUMO

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Feminino , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...