Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(26): 260402, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029463

RESUMO

I show that nondecreasing entropy provides a necessary and sufficient condition to convert the state of a physical system into a different state by a reversible transformation that acts on the system of interest and a further "catalyst," whose state has to remain invariant exactly in the transition. This statement is proven both in the case of finite-dimensional quantum mechanics, where von Neumann entropy is the relevant entropy, and in the case of systems whose states are described by probability distributions on finite sample spaces, where Shannon entropy is the relevant entropy. The results give an affirmative resolution to the (approximate) catalytic entropy conjecture introduced by Boes et al. [Phys. Rev. Lett. 122, 210402 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.210402]. They provide a complete single-shot characterization without external randomness of von Neumann entropy and Shannon entropy. I also compare the results to the setting of phenomenological thermodynamics and show how they can be used to obtain a quantitative single-shot characterization of Gibbs states in quantum statistical mechanics.

2.
Phys Rev Lett ; 123(20): 200604, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809071

RESUMO

One of the outstanding problems in nonequilibrium physics is to precisely understand when and how physically relevant observables in many-body systems equilibrate under unitary time evolution. General equilibration results show that equilibration is generic provided that the initial state has overlap with sufficiently many energy levels. But results not referring to typicality which show that natural initial states actually fulfill this condition are lacking. In this work, we present stringent results for equilibration for systems in which Rényi entanglement entropies in energy eigenstates with finite energy density are extensive for at least some, not necessarily connected, subsystems. Our results reverse the logic of common arguments, in that we derive equilibration from a weak condition akin to the eigenstate thermalization hypothesis, which is usually attributed to thermalization in systems that are assumed to equilibrate in the first place. We put the findings into the context of studies of many-body localization and many-body scars.

3.
Phys Rev Lett ; 122(19): 190501, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144922

RESUMO

The area law conjecture states that the entanglement entropy of a region of space in the ground state of a gapped, local Hamiltonian only grows like the surface area of the region. We show that, for any state that fulfills an area law, the reduced quantum state of a region of space can be unitarily compressed into a thickened boundary of the region. If the interior of the region is lost after this compression, the full quantum state can be recovered to high precision by a quantum channel only acting on the thickened boundary. The thickness of the boundary scales inversely proportional to the error for arbitrary spin systems and logarithmically with the error for quasifree bosonic systems. Our results can be interpreted as a single-shot operational interpretation of the area law. The result for spin systems follows from a simple inequality showing that any probability distribution with entropy S can be approximated to error ϵ by a distribution with support of size exp(S/ϵ), which we believe to be of independent interest. We also discuss an emergent approximate correspondence between bulk and boundary operators and the relation of our results to tensor network states.

4.
Rev Sci Instrum ; 90(3): 035102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927801

RESUMO

We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall signal to background ratio of up to 100 and a suppression of more than a factor 3 · 105 for undesirable Bragg reflections generated by the X-ray "transparent" windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector's dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer.

5.
Phys Rev Lett ; 120(12): 120602, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694098

RESUMO

Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

6.
Phys Rev E ; 97(2-1): 022142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548160

RESUMO

We investigate the limitations that emerge in thermodynamic tasks as a result of having local control only over the components of a thermal machine. These limitations are particularly relevant for devices composed of interacting many-body systems. Specifically, we study protocols of work extraction that employ a many-body system as a working medium whose evolution can be driven by tuning the on-site Hamiltonian terms. This provides a restricted set of thermodynamic operations, giving rise to alternative bounds for the performance of engines. Our findings show that those limitations in control render it, in general, impossible to reach Carnot efficiency; in its extreme ramification it can even forbid to reach a finite efficiency or finite work per particle. We focus on the one-dimensional Ising model in the thermodynamic limit as a case study. We show that in the limit of strong interactions the ferromagnetic case becomes useless for work extraction, while the antiferromagnetic case improves its performance with the strength of the couplings, reaching Carnot in the limit of arbitrary strong interactions. Our results provide a promising connection between the study of quantum control and thermodynamics and introduce a more realistic set of physical operations well suited to capture current experimental scenarios.

7.
Phys Rev E ; 93: 042126, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176273

RESUMO

The second law of thermodynamics, formulated as an ultimate bound on the maximum extractable work, has been rigorously derived in multiple scenarios. However, the unavoidable limitations that emerge due to the lack of control on small systems are often disregarded when deriving such bounds, which is specifically important in the context of quantum thermodynamics. Here we study the maximum extractable work with limited control over the working system and its interaction with the heat bath. We derive a general second law when the set of accessible Hamiltonians of the working system is arbitrarily restricted. We then apply our bound to particular scenarios that are important in realistic implementations: limitations on the maximum energy gap and local control over many-body systems. We hence demonstrate in what precise way the lack of control affects the second law. In particular, contrary to the unrestricted case, we show that the optimal work extraction is not achieved by simple thermal contacts. Our results not only generalize the second law to scenarios of practical relevance, but also take first steps in the direction of local thermodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...