Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 7: 1330919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469161

RESUMO

Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of "explainable" artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the "explanation performance" of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.

2.
Mach Learn ; 111(5): 1903-1923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611184

RESUMO

Machine learning (ML) is increasingly often used to inform high-stakes decisions. As complex ML models (e.g., deep neural networks) are often considered black boxes, a wealth of procedures has been developed to shed light on their inner workings and the ways in which their predictions come about, defining the field of 'explainable AI' (XAI). Saliency methods rank input features according to some measure of 'importance'. Such methods are difficult to validate since a formal definition of feature importance is, thus far, lacking. It has been demonstrated that some saliency methods can highlight features that have no statistical association with the prediction target (suppressor variables). To avoid misinterpretations due to such behavior, we propose the actual presence of such an association as a necessary condition and objective preliminary definition for feature importance. We carefully crafted a ground-truth dataset in which all statistical dependencies are well-defined and linear, serving as a benchmark to study the problem of suppressor variables. We evaluate common explanation methods including LRP, DTD, PatternNet, PatternAttribution, LIME, Anchors, SHAP, and permutation-based methods with respect to our objective definition. We show that most of these methods are unable to distinguish important features from suppressors in this setting. Supplementary Information: The online version contains supplementary material available at 10.1007/s10994-022-06167-y.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...