Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
3.
Nat Commun ; 9(1): 347, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367641

RESUMO

Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.


Assuntos
Proteína C9orf72/genética , Neurônios Motores/patologia , Receptores de AMPA/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Cálcio/metabolismo , Expansão das Repetições de DNA , Marcação de Genes , Humanos , Receptores de AMPA/genética , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
4.
Int J Pharm ; 522(1-2): 1-10, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28254654

RESUMO

A challenge to protein based therapies is the ability to produce biologically active proteins and their ensured delivery. Various approaches have been utilised including fusion of protein transduction domains with a protein or biomolecule of interest. A compounding issue is lack of specificity, efficiency and indeed whether the protein fusions are actually translocated into the cell and not merely an artefact of the fixation process. Here we present a novel platform, allowing the inducible export and uptake of a protein of interest. The system utilises a combination of the Tetracyline repressor system, combined with a fusion protein containing the N-terminal signal peptide from human chorionic gonadotropin beta-subunit, and a C-terminal poly-arginine domain for efficient uptake by target cells. This novel platform was validated using enhanced green fluorescent protein as the gene of interest. Doxycycline efficiently induced expression of the fusion protein. The human chorionic gonadotropin beta-subunit facilitated the export of the fusion protein into the cell culture media. Finally, the fusion protein was able to efficiently enter into neighbouring cells (target cells), mediated by the poly-arginine cell penetrating peptide. Importantly we have addressed the issue of whether the observed uptake is an artefact of the fixation process or indeed genuine translocation. In addition this platform provides a number of potential applications in diverse areas such as stem cell biology, immune therapy and cancer targeting therapies.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas/administração & dosagem , Antibacterianos/farmacologia , Células/metabolismo , Gonadotropina Coriônica Humana Subunidade beta/administração & dosagem , Gonadotropina Coriônica Humana Subunidade beta/farmacocinética , Doxiciclina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Mitomicina/farmacologia , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Recombinantes de Fusão , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
5.
Stem Cells Transl Med ; 5(9): 1171-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27388238

RESUMO

UNLABELLED: : Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells. SIGNIFICANCE: The isolation and study of patient stem cells and the development of methods for the generation of iPSCs have opened up exciting opportunities in understanding causes and exploring new treatments for major diseases. This technology was used to unravel the cellular phenotype in a severe form of inherited osteoarthritis, termed familial osteochondritis dissecans. The phenotypic abnormalities that give rise to cartilage lesions in these patients were able to be described via the generation of chondrocytes from bone marrow-derived mesenchymal stromal cells and iPSCs, illustrating the extraordinary value of these approaches in disease modeling.


Assuntos
Condrócitos/patologia , Estresse do Retículo Endoplasmático/fisiologia , Matriz Extracelular/patologia , Osteocondrite Dissecante/congênito , Adulto , Agrecanas/genética , Animais , Cartilagem/metabolismo , Técnicas de Cultura de Células/métodos , Condrócitos/metabolismo , Condrogênese/fisiologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Espectrometria de Massas , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Osteocondrite Dissecante/genética , Osteocondrite Dissecante/metabolismo , Osteocondrite Dissecante/patologia , Fenótipo
6.
Philos Trans R Soc Lond B Biol Sci ; 370(1680): 20140366, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26416677

RESUMO

Nuclear transfer that involves the transfer of the nucleus from a donor cell into an oocyte or early embryo from which the chromosomes have been removed was considered first as a means of assessing changes during development in the ability of the nucleus to control development. In mammals, development of embryos produced by nuclear transfer depends upon coordination of the cell cycles of donor and recipient cells. Our analysis of nuclear potential was completed in 1996 when a nucleus from an adult ewe mammary gland cell controlled development to term of Dolly the sheep. The new procedure has been used to target the first precise genetic modification into livestock; however, the greatest inheritance of the Dolly experiment was to make biologists think differently. If unknown factors in the recipient oocyte could reprogramme the nucleus to a stage very early in development then there must be other ways of making that change. Within 10 years, two laboratories working independently established protocols by which the introduction of selected transcription factors changes a small proportion of the treated cells to pluripotent stem cells. This ability to produce 'induced pluripotent stem cells' is providing revolutionary new opportunities in research and cell therapy.


Assuntos
Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear , Anfíbios , Animais , Técnicas de Reprogramação Celular , Clonagem de Organismos/tendências , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mamíferos , Técnicas de Transferência Nuclear/tendências , Primatas , Carneiro Doméstico
9.
Annu Rev Anim Biosci ; 2: 1-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384132

RESUMO

Collection, manipulation, assessment, and storage of mammalian gametes, embryos, and stem cells are providing important opportunities in agriculture, research, and medicine. Semen and embryo freezing in livestock are used in breeding schemes, especially in cattle and for international trade, with no risk of spreading disease. In human medicine, they are used in treatment of infertility. Usually, knowledge gained in one species is applicable in the others. In one exception, some ruminant embryos cultured according to protocols used in human in vitro fertilization become unusually large offspring. This is due to disturbances in expression of imprinted genes. The nuclear transfer procedure developed at the Roslin Institute is being used to make genetic modifications in livestock to either direct production of biomedical proteins, create animal models of human disease, or enhance animal health and productivity. Human pluripotent cells are being used in Edinburgh to identify drugs to treat degenerative diseases.


Assuntos
Agricultura/economia , Agricultura/métodos , Biotecnologia/economia , Biotecnologia/educação , Preservação de Tecido/métodos , Medicina Veterinária/métodos , Animais , Biotecnologia/tendências , Humanos , Preservação de Tecido/tendências , Medicina Veterinária/economia , Medicina Veterinária/tendências
11.
Cell Stem Cell ; 13(4): 382-4, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24094319

RESUMO

The ability to preselect the donor genotype of iPSC lines provides important opportunities for immune matching in cell therapy. Here we propose that an international assessment should be made of how immune incompatibility can best be managed and how a network of GMP HLA homozygous haplobanks could be operated.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Genótipo , Haplótipos/genética , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia
13.
Sci Transl Med ; 5(188): 188le2, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23740897

RESUMO

Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Humanos
14.
Proc Natl Acad Sci U S A ; 110(12): 4697-702, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23401527

RESUMO

Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação
16.
J Cell Sci ; 125(Pt 15): 3630-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505616

RESUMO

The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Domínio Catalítico , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/genética , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitinação
17.
Proc Natl Acad Sci U S A ; 109(15): 5803-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451909

RESUMO

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/patologia , Mutação/genética , Proteinopatias TDP-43/genética , Adulto , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Detergentes/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
20.
Mol Reprod Dev ; 78(10-11): 795-807, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21910153

RESUMO

Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Meiose/fisiologia , Óvulo/fisiologia , Animais , Feminino , Meiose/genética , Metáfase/genética , Metáfase/fisiologia , Modelos Biológicos , Oogênese/genética , Oogênese/fisiologia , Óvulo/citologia , Óvulo/metabolismo , Partenogênese/genética , Partenogênese/fisiologia , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...