Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 157(2): 259-69, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075919

RESUMO

Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy.


Assuntos
Biflavonoides/farmacologia , Infecções por Coxsackievirus/enzimologia , Regulação para Baixo/efeitos dos fármacos , Enterovirus Humano B/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Humanos , Regulação para Cima/efeitos dos fármacos
2.
Virus Res ; 163(2): 495-502, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138672

RESUMO

Interactions between viral replication machineries and host cell metabolism display interesting information how certain viruses capitalize cellular pathways to support progeny production. Among those pathogens, Coxsackievirus B3 (CVB3) has been identified to manipulate intracellular signaling very comprehensively. Next to others, this human pathogenic virus causes acute and chronic forms of myocarditis, pancreatitis, and meningitis. Here, activation of nuclear factor kappa B (NFκB) signaling appears to be involved in successful infection. Viral replication is not restricted to solid organs but involves susceptible immune cells as well. In the present study, p65 phosphorylation as one aspect of NFκB activation and inhibition via BAY 11-7085 administration was analyzed in the context of CVB3 replication in lymphoid cells. During CVB3 infection, an up-regulation of p65 translation is detectable, which is accompanied by noticeable phosphorylation. Inhibition of NFκB signaling reduces viral replication in a dose- and time-dependent manner. Taken together, these results indicate that during CVB3 replication in human and murine lymphoid cells, NFκB signaling is activated and facilitates viral replication. Therefore, antiviral strategies to target such central cellular signaling pathways may represent potential possibilities for the development of new virostatica.


Assuntos
Enterovirus Humano B/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Linfócitos/virologia , NF-kappa B/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...