Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521321

RESUMO

Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/química , Carotenoides/química , Cianobactérias/metabolismo , Cantaxantina , Anabaena/metabolismo , Ficobilissomas/química
2.
Plant J ; 117(3): 669-678, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921075

RESUMO

The plastid terminal oxidase PTOX controls the oxidation level of the plastoquinone pool in the thylakoid membrane and acts as a safety valve upon abiotic stress, but detailed characterization of its role in protecting the photosynthetic apparatus is limited. Here we used PTOX mutants in two model plants Arabidopsis thaliana and Marchantia polymorpha. In Arabidopsis, lack of PTOX leads to a severe defect in pigmentation, a so-called variegated phenotype, when plants are grown at standard light intensities. We created a green Arabidopsis PTOX mutant expressing the bacterial carotenoid desaturase CRTI and a double mutant in Marchantia lacking both PTOX isoforms, the plant-type and the alga-type PTOX. In both species, lack of PTOX affected the redox state of the plastoquinone pool. Exposure of plants to high light intensity showed in the absence of PTOX higher susceptibility of photosystem I to light-induced damage while photosystem II was more stable compared with the wild type demonstrating that PTOX plays both, a pro-oxidant and an anti-oxidant role in vivo. Our results shed new light on the function of PTOX in the protection of photosystem I and II.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte de Elétrons/genética , Marchantia/genética , Marchantia/metabolismo , Oxirredução , Oxirredutases/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastídeos/metabolismo , Plastoquinona
3.
Micromachines (Basel) ; 14(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893308

RESUMO

Orange carotenoid protein (OCP) is a photochromic carotenoprotein involved in the photoprotection of cyanobacteria. It is activated by blue-green light to a red form OCPR capable of dissipating the excess of energy of the cyanobacterial photosynthetic light-harvesting systems. Activation to OCPR can also be achieved in the dark. In the present work, activation by pH changes of two different OCPs-containing echinenone or canthaxanthin as carotenoids-is investigated in different conditions. A particular emphasis is put on OCP encapsulated in SBA-15 mesoporous silica nanoparticles. It is known that in these hybrid systems, under appropriate conditions, OCP remains photoactive. Here, we show that when immobilised in SBA-15, the OCP visible spectrum is sensitive to pH changes, but such a colorimetric response is very different from the one observed for OCP in solution. In both cases (SBA-15 matrices and solutions), pH-induced colour changes are related either by orange-to-red OCP activation, or by carotenoid loss from the denatured protein. Of particular interest is the response of OCP in SBA-15 matrices, where a sudden change in the Vis absorption spectrum and in colour is observed for pH changing from 2 to 3 (in the case of canthaxanthin-binding OCP in SBA-15: λMAX shifts from 454 to 508 nm) and for pH changing from 3 to 4 (in the case of echinenone-binding OCP in SBA-15: λMAX shifts from 445 to 505 nm). The effect of temperature on OCP absorption spectrum and colour (in SBA-15 matrices) has also been investigated and found to be highly dependent on the properties of the used mesoporous silica matrix. Finally, we also show that simultaneous encapsulation in selected surface-functionalised SBA-15 nanoparticles of appropriate fluorophores makes it possible to develop OCP-based pH-sensitive fluorescent systems. This work therefore represents a proof of principle that OCP immobilised in mesoporous silica is a promising system in the development of colorimetric and fluorometric pH and temperature sensors.

4.
Microorganisms ; 11(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37512961

RESUMO

As the COVID-19 pandemic continues, variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge. Immunogenicity evaluation of vaccines and identification of correlates of protection for vaccine effectiveness is critical to aid the development of vaccines against emerging variants. Anti-recombinant spike (rS) protein immunoglobulin G (IgG) quantitation in the systemic circulation (serum/plasma) is shown to correlate with vaccine efficacy. Thus, an enzyme-linked immunosorbent assay (ELISA)-based binding assay to detect SARS-CoV-2 (ancestral and variant strains) anti-rS IgG in human serum samples was developed and validated. This assay successfully met acceptance criteria for inter/intra-assay precision, specificity, selectivity, linearity, lower/upper limits of quantitation, matrix effects, and assay robustness. The analyte in serum was stable for up to 8 freeze/thaw cycles and 2 years in -80 °C storage. Similar results were observed for the Beta, Delta, and Omicron BA.1/BA.5/XBB.1.5 variant-adapted assays. Anti-rS IgG assay results correlated significantly with neutralization and receptor binding inhibition assays. In addition, usage of international reference standards allows data extrapolation to WHO international units (BAU/mL), facilitating comparison of results with other IgG assays. This anti-rS IgG assay is a robust, high-throughput method to evaluate binding IgG responses to S protein in serum, enabling rapid development of effective vaccines against emerging COVID-19 variants.

5.
Photochem Photobiol Sci ; 22(6): 1379-1391, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36853495

RESUMO

Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/química , Vibração , Carotenoides/metabolismo , Cianobactérias/metabolismo , Espectrofotometria Infravermelho
6.
Biophys J ; 121(15): 2849-2872, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794830

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 µs after absorption of a first photon.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo
7.
JACS Au ; 2(5): 1084-1095, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647603

RESUMO

A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of a photoactivated form, OCPR. The most recent one suggests that 3 ps-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state, which has the longest reported lifetime of a few to tens of picoseconds, is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photodynamics of the OCP from Synechocystis PCC 6803 carried out using visible-near infrared femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photoactivation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S∼, living a few tens of picoseconds and formed only upon 470 nm excitation. Because neither the P1 quantum yield nor the photoactivation speed over hundreds of seconds vary under green and blue continuous irradiation, this S∼ species is unlikely to be involved in the photoactivation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on the excited-state photophysical properties. Differences in spectral signatures and lifetimes of the different excited states were observed at a variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for the careful consideration of the excitation power and His-tag position when comparing the photoactivation of different OCP variants and beg to revisit the notion that S* is the precursor of photoactivated OCPR.

8.
Biochim Biophys Acta Bioenerg ; 1863(7): 148584, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752265

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


Assuntos
Cianobactérias , Planktothrix , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cianobactérias/metabolismo , Fluorescência
9.
Biochim Biophys Acta Bioenerg ; 1863(1): 148504, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619092

RESUMO

The Orange Carotenoid Protein (OCP) is a soluble photoactive protein involved in cyanobacterial photoprotection. It is formed by the N-terminal domain (NTD) and C-terminal (CTD) domain, which establish interactions in the orange inactive form and share a ketocarotenoid molecule. Upon exposure to intense blue light, the carotenoid molecule migrates into the NTD and the domains undergo separation. The free NTD can then interact with the phycobilisome (PBS), the extramembrane cyanobacterial antenna, and induces thermal dissipation of excess absorbed excitation energy. The OCP and PBS amino acids involved in their interactions remain undetermined. To identify the OCP amino acids essential for this interaction, we constructed several OCP mutants (23) with modified amino acids located on different NTD surfaces. We demonstrated that only the NTD surface that establishes interactions with the CTD in orange OCP is involved in the binding of OCP to PBS. All amino acids surrounding the carotenoid ß1 ring in the OCPR-NTD (L51, P56, G57, N104, I151, R155, N156) are important for binding OCP to PBS. Additionally, modification of the amino acids influences OCP photoactivation and/or recovery rates, indicating that they are also involved in the translocation of the carotenoid.


Assuntos
Ficobilissomas , Cianobactérias
11.
Biochim Biophys Acta Bioenerg ; 1861(8): 148214, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360310

RESUMO

The structural features enabling carotenoid translocation between molecular entities in nature is poorly understood. Here, we present the three-dimensional X-ray structure of an expanded oligomeric state of the C-terminal domain homolog (CTDH) of the orange carotenoid protein, a key water-soluble protein in cyanobacterial photosynthetic photo-protection, at 2.9 Å resolution. This protein binds a canthaxanthin carotenoid ligand and undergoes structural reorganization at the dimeric level, which facilitates cargo uptake and delivery. The structure displays heterogeneity revealing the dynamic nature of its C-terminal tail (CTT). Molecular dynamics (MD) simulations based on the CTDH structures identified specific residues that govern the dimeric transition mechanism. Mutagenesis based on the crystal structure and these MD simulations then confirmed that these specific residues within the CTT are critical for carotenoid uptake, encapsulation and delivery processes. We present a mechanism that can be applied to other systems that require cargo uptake.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Transporte Biológico , Cianobactérias/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína
12.
Biochim Biophys Acta Bioenerg ; 1861(4): 148037, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228405

RESUMO

Photosynthetic organisms need to sense and respond to fluctuating environmental conditions, to perform efficient photosynthesis and avoid the formation of harmful reactive oxygen species. Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome, the extramembranal light-harvesting antenna. This mechanism is triggered by the photoactive orange carotenoid protein (OCP). In this study, we characterized OCP and the related photoprotective mechanism in non-stressed and light-stressed cells of three different strains of Planktothrix that can form impressive blooms. In addition to changing lake ecosystemic functions and biodiversity, Planktothrix blooms can have adverse effects on human and animal health as they produce toxins (e.g., microcystins). Three Planktothrix strains were selected: two green strains, PCC 10110 (microcystin producer) and PCC 7805 (non-microcystin producer), and one red strain, PCC 7821. The green strains colonize shallow lakes with higher light intensities while red strains proliferate in deep lakes. Our study allowed us to conclude that there is a correlation between the ecological niche in which these strains proliferate and the rates of induction and recovery of OCP-related photoprotection. However, differences in the resistance to prolonged high-light stress were correlated to a better replacement of damaged D1 protein and not to differences in OCP photoprotection. Finally, microcystins do not seem to be involved in photoprotection as was previously suggested.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Luz , Estresse Fisiológico/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cianobactérias/genética , Cianobactérias/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Nat Plants ; 5(10): 1076-1086, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527845

RESUMO

The photoactive orange carotenoid protein (OCP) is a blue-light intensity sensor involved in cyanobacterial photoprotection. Three OCP families co-exist (OCPX, OCP1 and OCP2), having originated from the fusion of ancestral domain genes. Here, we report the characterization of an OCPX and the evolutionary characterization of OCP paralogues focusing on the role of the linker connecting the domains. The addition of the linker with specific amino acids enabled the photocycle of the OCP ancestor. OCPX is the paralogue closest to this ancestor. A second diversification gave rise to OCP1 and OCP2. OCPX and OCP2 present fast deactivation and weak antenna interaction. In OCP1, OCP deactivation became slower and interaction with the antenna became stronger, requiring a further protein to detach OCP from the antenna and accelerate its deactivation. OCP2 lost the tendency to dimerize, unlike OCPX and OCP1, and the role of its linker is slightly different, giving less controlled photoactivation.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Evolução Molecular , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Mutação , Processos Fotoquímicos , Ligação Proteica , Domínios Proteicos , Synechocystis/genética
14.
J Phys Chem B ; 123(15): 3259-3266, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30895789

RESUMO

The orange carotenoid protein (OCP), which is essential in cyanobacterial photoprotection, is the first photoactive protein containing a carotenoid as an active chromophore. Static and time-resolved Fourier transform infrared (FTIR) difference spectroscopy under continuous illumination at different temperatures was applied to investigate its photoactivation mechanism. Here, we demonstrate that in the OCP, the photo-induced conformational change involves at least two different steps, both in the second timescale at 277 K. Each step involves partial reorganization of α-helix domains. At early illumination times, the disappearance of a nonsolvent-exposed α-helix (negative 1651 cm-1 band) is observed. At longer times, a 1644 cm-1 negative band starts to bleach, showing the disappearance of a solvent-exposed α-helix, either the N-terminal extension and/or the C-terminal tail. A kinetic analysis clearly shows that these two events are asynchronous. Minor modifications in the overall FTIR difference spectra confirm that the global protein conformational change consists of-at least-two asynchronous contributions. Comparison of spectra recorded in H2O and D2O suggests that internal water molecules may contribute to the photoactivation mechanism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Fatores de Tempo
15.
FEBS J ; 286(10): 1908-1924, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843329

RESUMO

Carotenoids are lipophilic pigments with multiple biological functions from coloration to vision and photoprotection. Still, the number of water-soluble carotenoid-binding proteins described to date is limited, and carotenoid transport and carotenoprotein maturation processes are largely underexplored. Recent studies revealed that CTDHs, which are natural homologs of the C-terminal domain (CTD) of the orange carotenoid protein (OCP), a photoswitch involved in cyanobacterial photoprotection, are able to bind carotenoids, with absorption shifted far into the red region of the spectrum. Despite the recent discovery of their participation in carotenoid transfer processes, the functional roles of the diverse family of CTDHs are not well understood. Here, we characterized CTDH carotenoproteins from Anabaena variabilis (AnaCTDH) and Thermosynechococcus elongatus and examined their ability to participate in carotenoid transfer processes with a set of OCP-derived proteins. This revealed that carotenoid transfer occurs in several directions guided by different affinities for carotenoid and specific protein-protein interactions. We show that CTDHs have higher carotenoid affinity compared to the CTD of OCP from Synechocystis, which results in carotenoid translocation from the CTD into CTDH via a metastable heterodimer intermediate. Activation of OCP by light, or mutagenesis compromising the OCP structure, provides AnaCTDH with an opportunity to extract carotenoid from the full-length OCP, either from Synechocystis or Anabaena. These previously unknown reactions between water-soluble carotenoproteins demonstrate multidirectionality of carotenoid transfer, allowing for efficient and reversible control over the carotenoid-mediated protein oligomerization by light, which gives insights into the physiological regulation of OCP activity by CTDH and suggests multiple applications.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cianobactérias/fisiologia , Anabaena variabilis/fisiologia , Proteínas de Bactérias/genética , Transporte Biológico , Luz , Processos Fotoquímicos , Domínios Proteicos , Solubilidade , Água
16.
J Am Chem Soc ; 141(1): 520-530, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30511841

RESUMO

The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid ß1-ring in picoseconds occurs at a low yield of <1%, whereby the ß1-ring retains a trans configuration with respect to the conjugated π-electron chain. This event initiates structural changes at the N-terminal domain in 1 µs, which allow the carotenoid to translocate into the N-terminal domain in 10 µs. We identified infrared signatures of helical elements that dock on the C-terminal domain ß-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Luz , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
17.
Commun Biol ; 1: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272005

RESUMO

A recently reported family of soluble cyanobacterial carotenoproteins, homologs of the C-terminal domain (CTDH) of the photoprotective Orange Carotenoid Protein, is suggested to mediate carotenoid transfer from the thylakoid membrane to the Helical Carotenoid Proteins, which are paralogs of the N-terminal domain of the OCP. Here we present the three-dimensional structure of a carotenoid-free CTDH variant from Anabaena (Nostoc) PCC 7120. This CTDH contains a cysteine residue at position 103. Two dimer-forming interfaces were identified, one stabilized by a disulfide bond between monomers and the second between each monomer's ß-sheets, both compatible with small-angle X-ray scattering data and likely representing intermediates of carotenoid transfer processes. The crystal structure revealed a major positional change of the C-terminal tail. Further mutational analysis revealed the importance of the C-terminal tail in both carotenoid uptake and delivery. These results have allowed us to suggest a detailed model for carotenoid transfer via these soluble proteins.

18.
J Phys Chem Lett ; 9(9): 2426-2432, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29688018

RESUMO

Photosynthetic organisms have found various smart ways to cope with unexpected changes in light conditions. In many cyanobacteria, the lethal effects of a sudden increase in light intensity are mitigated mainly by the interaction between phycobilisomes (PBs) and the orange carotenoid protein (OCP). The latter senses high light intensities by means of photoactivation and triggers thermal energy dissipation from the PBs. Due to the brightness of their emission, PBs can be characterized at the level of individual complexes. Here, energy dissipation from individual PBs was reversibly switched on and off using only light and OCP. We reveal the presence of quasistable intermediate states during the binding and unbinding of OCP to PB, with a spectroscopic signature indicative of transient decoupling of some of the PB rods during docking of OCP. Real-time control of emission from individual PBs has the potential to contribute to the development of new super-resolution imaging techniques.

19.
Plant Physiol ; 175(3): 1283-1303, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935842

RESUMO

The photoactive Orange Carotenoid Protein (OCP) photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain is the active part of the protein, and the C-terminal domain regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins [HCPs]), paralogs of the N-terminal domain of OCP, were described. Bioinformatics studies also revealed the existence of genes coding for homologs of CTD. Here, we show that the latter genes encode carotenoid proteins (CTDHs). This family of proteins contains two subgroups with distinct characteristics. One CTDH of each clade was further characterized, and they proved to be very good singlet oxygen quenchers. When synthesized in Escherichia coli or Synechocystis PCC 6803, CTDHs formed dimers that share a carotenoid molecule and are able to transfer their carotenoid to apo-HCPs and apo-OCP. The CTDHs from clade 2 have a cysteine in position 103. A disulfide bond is easily formed between the monomers of the dimer preventing carotenoid transfer. This suggests that the transfer of the carotenoid could be redox regulated in clade 2 CTDH. We also demonstrate here that apo-OCPs and apo-CTDHs are able to take the carotenoid directly from membranes, while HCPs are unable to do so. HCPs need the presence of CTDH to become holo-proteins. We propose that, in cyanobacteria, the CTDHs are carotenoid donors to HCPs.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Homologia de Sequência de Aminoácidos , Synechocystis/metabolismo , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Cantaxantina/metabolismo , Sequência Consenso , Escherichia coli/metabolismo , Evolução Molecular , Fluorescência , Modelos Biológicos , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Análise Espectral
20.
Biochim Biophys Acta Bioenerg ; 1858(4): 308-317, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188781

RESUMO

To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.


Assuntos
Aminoácidos/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/química , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...