Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 20206-20213, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737043

RESUMO

Using a simple solution growth technique, we grow crystals with phenanthroline as a ligand and various rare earth ions: thulium (Tm), ytterbium (Yb), gadolinium (Gd), lanthanum (La), neodymium (Nd), europium (Eu), and erbium (Er). We then selected the composition that forms thin plates with well-defined shapes, Er(NO3)Phen2, and explored the effects of various conditions on crystal formation and growth, including temperature regime, light illumination, and substrates where the crystals are formed and grown. The composition and local environment strongly affect the size and shape of microcrystals and substrate coverage. The use of gold substrates significantly enhances the crystal growing process. Elevated temperatures negatively affect the crystal growth.

2.
Chirality ; 34(12): 1503-1514, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36300866

RESUMO

Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.


Assuntos
Nanopartículas , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Cisteína , Estereoisomerismo , Nanopartículas/química
3.
ACS Omega ; 6(50): 34294-34300, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963915

RESUMO

Possible modifications in electrochemical reaction kinetics are explored in a nanostructured plasmonic environment with and without additional light illumination using a cyclic voltammetry (CV) method. In nanostructured gold, the effect of light on anodic and cathodic currents is much pronounced than that in a flat system. The electron-transfer rate shows a 3-fold increase under photoexcitation. The findings indicate a possibility of using plasmonic excitations for controlling electrochemical reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...