Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802601

RESUMO

The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aß), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others are associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. The dissolution of mature fibrils and toxic amyloidogenic intermediates, including oligomers, continues to be the pinnacle in the treatment of neurodegenerative disorders. Yet, methods to effectively and quantitatively report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. Here we describe a simplified method that implements the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique implements an optimized but well-known, simple, inexpensive, and quantitative assessment previously used to assess the oligomerization of amyloid monomers and subsequent amyloid fibrils. This method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers, dimers, and trimers and/or retain amyloid proteins in their monomeric forms. Most importantly, our optimized method diminishes existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.

2.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585783

RESUMO

The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aß), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. The dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers continues to be the pinnacle in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. Here we describe a simplified method that implements the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique implements an optimized but well-known, simple, inexpensive and quantitative assessment previously used to assess the oligomerization of amyloid monomers and subsequent amyloid fibrils. This method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers, dimers, and trimers and/or retain amyloid proteins in their monomeric forms. Most importantly, our optimized method diminishes existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.

3.
Res Sq ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945382

RESUMO

The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aß), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. Conversely, the dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers remains the holy grail in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. For the first time, we describe the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique permits rapid, inexpensive and quantitative assessment of the fraction of amyloid monomers that form intermediates and mature fibrils. In addition, the method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers or retain amyloid proteins in their monomeric forms. Importantly, our methodological advance diminishes major existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...