Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798487

RESUMO

Tau reduction is a promising therapeutic strategy for Alzheimer's disease. In numerous models, tau reduction via genetic knockout is beneficial, at least in part due to protection against hyperexcitability and seizures, but the underlying mechanisms are unclear. Here we describe the generation and initial study of a new conditional Tau flox model to address these mechanisms. Given the protective effects of tau reduction against hyperexcitability, we compared the effects of selective tau reduction in excitatory or inhibitory neurons. Tau reduction in excitatory neurons mimicked the protective effects of global tau reduction, while tau reduction in inhibitory neurons had the opposite effect and increased seizure susceptibility. Since most prior studies used knockout mice lacking tau throughout development, we crossed Tau flox mice with inducible Cre mice and found beneficial effects of tau reduction in adulthood. Our findings support the effectiveness of tau reduction in adulthood and indicate that excitatory neurons may be a key site for its excitoprotective effects. SUMMARY: A new conditional tau knockout model was generated to study the protective effects of tau reduction against hyperexcitability. Conditional tau reduction in excitatory, but not inhibitory, neurons was excitoprotective, and induced tau reduction in adulthood was excitoprotective without adverse effects.

3.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636965

RESUMO

Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.


Assuntos
Transporte Axonal , Vesículas Sinápticas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Proteólise , Vesículas Sinápticas/metabolismo
4.
J Neurosci ; 42(25): 5085-5101, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35589390

RESUMO

Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Camundongos , Doenças do Sistema Nervoso Periférico , RNA Mensageiro , Células de Schwann/metabolismo
5.
J Neurochem ; 156(3): 309-323, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32901953

RESUMO

Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.


Assuntos
Encéfalo/enzimologia , Fígado/enzimologia , Neurônios/enzimologia , Ubiquitina Tiolesterase/metabolismo , Animais , Feminino , Técnicas Genéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
J Neurochem ; 148(3): 386-399, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30451289

RESUMO

Ubiquitin is an essential signaling protein that controls many different cellular processes. While cellular ubiquitin levels normally cycle between pools of free and conjugated ubiquitin, the balance of these ubiquitin pools can be shifted by exposure to a variety of cellular stresses. Altered ubiquitin pools are also observed in several neurological disorders, suggesting that imbalances in ubiquitin homeostasis may contribute to neuronal dysfunction. To examine the effects of increased ubiquitin levels on the mammalian nervous system, we generated transgenic mice that express ubiquitin under the control of the Thy1.2 promoter. While we did not detect global changes in levels of ubiquitin conjugates in the hippocampus, we found that increasing ubiquitin levels reduced AMPA (GRIA1-4) receptor expression without affecting the levels of NMDA (GRIN) or GABAA receptors. Ubiquitin over-expression also negatively impacted hippocampus-dependent learning and memory as well as baseline excitability and synaptic plasticity at hippocampal CA3-CA1 synapses. These changes occurred in a dose-dependent manner in that mice with the highest levels of ubiquitin over-expression had the greatest deficits in synaptic function and were the most impaired in the learning and memory tasks. As chronic elevation of ubiquitin expression in neurons is sufficient to cause changes in synaptic function and cognition, altered ubiquitin homeostasis may be an important contributor to the stress-induced changes observed in neurological disorders.


Assuntos
Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Ubiquitina/metabolismo , Animais , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1157-1170, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28372990

RESUMO

In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1>25µM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1~Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1≤25µM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1~Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1~Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Pirróis/farmacologia , Pirrolidinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteínas tau/genética
8.
PLoS Genet ; 11(6): e1005290, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26115514

RESUMO

Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fosfoproteínas/genética , Sequência de Aminoácidos , Animais , Comportamento Animal/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Atividade Motora/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/fisiopatologia , Fosfoproteínas/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Transmissão Sináptica/genética
9.
Front Mol Neurosci ; 8: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954152

RESUMO

Ubiquitin-specific protease 14 (USP14) is a major deubiquitinating enzyme and a key determinant of neuromuscular junction (NMJ) structure and function. We have previously reported dramatic ubiquitin depletion in the nervous systems of the USP14-deficient ataxia (ax (J) ) mice and demonstrated that transgenic ubiquitin overexpression partially rescues the ax (J) neuromuscular phenotype. However, later work has shown that ubiquitin overexpression does not correct the ax (J) deficits in hippocampal short term plasticity, and that transgenic expression of a catalytically inactive form of USP14 in the nervous system mimics the neuromuscular phenotype observed in the ax (J) mice, but causes a only a modest reduction of free ubiquitin. Instead, increased ubiquitin conjugates and aberrant activation of pJNK are observed in the nervous systems of the USP14 catalytic mutant mice. In this report, we demonstrate that restoring free ubiquitin levels in the USP14 catalytic mutant mice improved NMJ structure and reduced pJNK accumulation in motor neuron terminals, but had a negative impact on measures of NMJ function, such as motor performance and muscle development. Transgenic expression of ubiquitin had a dose-dependent effect on NMJ function in wild type mice: moderate levels of overexpression improved NMJ function while more robust ubiquitin overexpression reduced muscle development and motor coordination. Combined, these results suggest that maintenance of free ubiquitin levels by USP14 contributes to NMJ structure, but that USP14 regulates NMJ function through a separate pathway.

10.
Mol Neurodegener ; 10: 3, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25575639

RESUMO

BACKGROUND: Ubiquitin-specific protease 14 (USP14) is one of three proteasome-associated deubiquitinating enzymes that remove ubiquitin from proteasomal substrates prior to their degradation. In vitro evidence suggests that inhibiting USP14's catalytic activity alters the turnover of ubiquitinated proteins by the proteasome, although whether protein degradation is accelerated or delayed seems to be cell-type and substrate specific. For example, combined inhibition of USP14 and the proteasomal deubiquitinating enzyme UCH37 halts protein degradation and promotes apoptosis in multiple myeloma cells, whereas USP14 inhibition alone accelerates the degradation of aggregate-prone proteins in immortalized cell lines. These findings have prompted interest in USP14 as a therapeutic target both inside and outside of the nervous system. However, loss of USP14 in the spontaneously occurring ataxia mouse mutant leads to a dramatic neuromuscular phenotype and early perinatal lethality, suggesting that USP14 inhibition may have adverse consequences in the nervous system. We therefore expressed a catalytically inactive USP14 mutant in the mouse nervous system to determine whether USP14's catalytic activity is required for neuromuscular junction (NMJ) structure and function. RESULTS: Mice expressing catalytically inactive USP14 in the nervous system exhibited motor deficits, altered NMJ structure, and synaptic transmission deficits that were similar to what is observed in the USP14-deficient ataxia mice. Acute pharmacological inhibition of USP14 in wild type mice also reduced NMJ synaptic transmission. However, there was no evidence of altered proteasome activity when USP14 was inhibited either genetically or pharmacologically. Instead, these manipulations increased the levels of non-proteasome targeting ubiquitin conjugates. Specifically, we observed enhanced proteasome-independent ubiquitination of mixed lineage kinase 3 (MLK3). Consistent with the direct activation of MLK3 by ubiquitination, we also observed increased activation of its downstrea targets MAP kinase kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK). In vivo inhibition of JNK improved motor function and synapse structure in the USP14 catalytic mutant mice. CONCLUSIONS: USP14's catalytic activity is required for nervous system structure and function and has an ongoing role in NMJ synaptic transmission. By regulating the ubiquitination status of protein kinases, USP14 can coordinate the activity of intracellular signaling pathways that control the development and activity of the NMJ.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Junção Neuromuscular/fisiopatologia , Transdução de Sinais/fisiologia , Ubiquitina Tiolesterase/fisiologia , Animais , Antracenos/farmacologia , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Catálise , Células Cultivadas , Córtex Cerebral/citologia , Comportamento Exploratório , Feminino , Força da Mão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/ultraestrutura , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise , Pirróis/farmacologia , Pirrolidinas/farmacologia , Teste de Desempenho do Rota-Rod , Transdução de Sinais/genética , Transgenes , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitinação
11.
J Physiol ; 592(4): 571-86, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24218545

RESUMO

The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in ax(J) mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses. Here we report that USP14 regulates synaptic function through a novel, deubiquitination-independent mechanism. Although PPF is usually inversely related to release probability, USP14 deficiency impairs PPF without altering basal release probability. Instead, the loss of USP14 causes a large reduction in the number of synaptic vesicles. Over-expression of a catalytically inactive form of USP14 rescues the PPF deficit and restores synaptic vesicle number, indicating that USP14 regulates presynaptic structure and function independently of its role in deubiquitination. Finally, the PPF deficit caused by loss of USP14 can be rescued by pharmacological inhibition of proteasome activity, suggesting that inappropriate protein degradation underlies the PPF impairment. Overall, we demonstrate a novel, deubiquitination-independent function for USP14 in influencing synaptic architecture and plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , Plasticidade Neuronal , Vesículas Sinápticas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Ubiquitina Tiolesterase/genética
12.
Learn Mem ; 21(1): 9-13, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24344179

RESUMO

Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme that is thought to regulate protein degradation in neurons; however, it is unknown if USP14 is involved in learning-dependent synaptic plasticity. We found that infusion of a USP14 inhibitor into the amygdala impaired long-term memory for a fear conditioning task, suggesting that USP14 is a critical regulator of long-term memory formation in the amygdala.


Assuntos
Tonsila do Cerebelo/metabolismo , Medo , Memória de Longo Prazo/fisiologia , Ubiquitina Tiolesterase/metabolismo , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Medo/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Memória de Longo Prazo/efeitos dos fármacos , Ratos , Ratos Long-Evans
13.
PLoS One ; 8(12): e84042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358326

RESUMO

In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax (J)) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax (J) mice, the nmf375 mice did not exhibit these ax (J) developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.


Assuntos
Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/genética , Ubiquitina Tiolesterase/deficiência , Processamento Alternativo , Animais , Axônios/patologia , Sequência de Bases , Mapeamento Cromossômico , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Homeostase/genética , Humanos , Camundongos , Placa Motora/metabolismo , Placa Motora/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mutação , Doenças Neuromusculares/mortalidade , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Plasticidade Neuronal , Fenótipo , Subunidades Proteicas/genética , Células de Purkinje/citologia , Células de Purkinje/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Índice de Gravidade de Doença , Sinapses/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética
14.
Cell Biochem Biophys ; 67(1): 67-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23686613

RESUMO

Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson's disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.


Assuntos
Neurônios/metabolismo , Ubiquitina/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Transdução de Sinais , Sinapses/metabolismo , Ubiquitina/biossíntese , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
15.
PLoS One ; 7(10): e47884, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144711

RESUMO

Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient ax(J) mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3ß. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.


Assuntos
Neurônios/metabolismo , Tauopatias/metabolismo , Ubiquitina Tiolesterase/deficiência , Proteínas tau/metabolismo , Animais , Ataxina-3 , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Técnica Indireta de Fluorescência para Anticorpo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Análise de Sobrevida , Tauopatias/genética , Tauopatias/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas tau/genética
16.
Am J Physiol Cell Physiol ; 302(4): C698-708, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075695

RESUMO

Homozygous ataxic mice (ax(J)) express reduced levels of the deubiquitinating enzyme Usp14. They develop severe tremors by 2-3 wk of age, followed by hindlimb paralysis, and death by 6-8 wk. While changes in the ubiquitin proteasome system often result in the accumulation of ubiquitin protein aggregates and neuronal loss, these pathological markers are not observed in the ax(J) mice. Instead, defects in neurotransmission were observed in both the central and peripheral nervous systems of ax(J) mice. We have now identified several new alterations in peripheral neurotransmission in the ax(J) mice. Using the two-microelectrode voltage clamp technique on diaphragm muscles of ax(J) mice, we observed that under normal neurotransmitter release conditions ax(J) mice lacked paired-pulse facilitation and exhibited a frequency-dependent increase in rundown of the end plate current at high-frequency stimulation (HFS). Combined electrophysiology and styryl dye staining revealed a significant reduction in quantal content during the initial and plateau portions of the HFS train. In addition, uptake of styryl dyes (FM dye) during HFS demonstrated that the size of the readily releasable vesicle pool was significantly reduced. Destaining rates for styryl dyes suggested that ax(J) neuromuscular junctions are unable to mobilize a sufficient number of vesicles during times of intense activity. These results imply that ax(J) nerve terminals are unable to recruit a sufficient number of vesicles to keep pace with physiological rates of transmitter release. Therefore, ubiquitination of synaptic proteins appears to play an important role in the normal operation of the neurotransmitter release machinery and in regulating the size of pools of synaptic vesicles.


Assuntos
Ataxia/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Periférico/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Ubiquitina Tiolesterase/deficiência , Potenciais de Ação , Animais , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Diafragma/citologia , Diafragma/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/análise , Deleção de Genes , Homozigoto , Camundongos , Camundongos Knockout , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/fisiopatologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Músculos Respiratórios/citologia , Músculos Respiratórios/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação/fisiologia
17.
J Neurosci ; 31(48): 17505-13, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131412

RESUMO

The ubiquitin-proteasome system (UPS) controls protein abundance and is essential for many aspects of neuronal function. In ataxia (ax(J)) mice, profound neurological and synaptic defects result from a loss-of-function mutation in the proteasome-associated deubiquitinating enzyme Usp14, which is required for recycling ubiquitin from proteasomal substrates. Here, we show that transgenic complementation of ax(J) mice with neuronally expressed ubiquitin prevents early postnatal lethality, restores muscle mass, and corrects developmental and functional deficits resulting from the loss of Usp14, demonstrating that ubiquitin deficiency is a major cause of the neurological defects observed in the ax(J) mice. We also show that proteasome components are normally induced during the first 2 weeks of postnatal development, which coincides with dramatic alterations in polyubiquitin chain formation. These data demonstrate a critical role for ubiquitin homeostasis in synaptic development and function, and show that ubiquitin deficiency may contribute to diseases characterized by synaptic dysfunction.


Assuntos
Homeostase/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sinapses/fisiologia , Ubiquitina/metabolismo , Animais , Força da Mão/fisiologia , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Teste de Desempenho do Rota-Rod , Ubiquitina/genética
18.
Nature ; 467(7312): 179-84, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20829789

RESUMO

Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Ubiquitinação
19.
J Neurosci ; 29(35): 10909-19, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19726649

RESUMO

Dysfunction of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many neurological diseases, including Alzheimer's, spinocerebellar ataxia, and several motor neuron diseases. Recent research indicates that changes in synaptic transmission may play a critical role in the progression of neurological disease; however, the mechanisms by which the UPS regulates synaptic structure and function have not been well characterized. In this report, we show that Usp14 is indispensable for synaptic development and function at neuromuscular junctions (NMJs). Usp14-deficient axJ mice display a resting tremor, a reduction in muscle mass, and notable hindlimb rigidity without any detectable loss of motor neurons. Instead, loss of Usp14 causes developmental defects at motor neuron endplates. Presynaptic defects include phosphorylated neurofilament accumulations, nerve terminal sprouting, and poor arborization of the motor nerve terminals, whereas postsynaptic acetylcholine receptors display immature plaque-like morphology. These structural changes in the NMJ correlated with ubiquitin loss in the spinal cord and sciatic nerve. Further studies demonstrated that the greatest loss of ubiquitin was found in synaptosomal fractions, suggesting that the endplate swellings may be caused by decreased protein turnover at the synapse. Transgenic restoration of Usp14 in the nervous system corrected the levels of monomeric ubiquitin in the motor neuron circuit and the defects that were observed in the motor endplates and muscles of the axJ mice. These data define a critical role for Usp14 at mammalian synapses and suggest a requirement for local ubiquitin recycling by the proteasome to control the development and function of NMJs.


Assuntos
Junção Neuromuscular/enzimologia , Junção Neuromuscular/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Sinapses/enzimologia , Ubiquitina Tiolesterase/fisiologia , Ubiquitina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Junção Neuromuscular/metabolismo , Ubiquitina Tiolesterase/deficiência
20.
PLoS Genet ; 5(9): e1000631, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19759851

RESUMO

Ataxia represents a pathological coordination failure that often involves functional disturbances in cerebellar circuits. Purkinje cells (PCs) characterize the only output neurons of the cerebellar cortex and critically participate in regulating motor coordination. Although different genetic mutations are known that cause ataxia, little is known about the underlying cellular mechanisms. Here we show that a mutated ax(J) gene locus, encoding the ubiquitin-specific protease 14 (Usp14), negatively influences synaptic receptor turnover. Ax(J) mouse mutants, characterized by cerebellar ataxia, display both increased GABA(A) receptor (GABA(A)R) levels at PC surface membranes accompanied by enlarged IPSCs. Accordingly, we identify physical interaction of Usp14 and the GABA(A)R alpha1 subunit. Although other currently unknown changes might be involved, our data show that ubiquitin-dependent GABA(A)R turnover at cerebellar synapses contributes to ax(J)-mediated behavioural impairment.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Mutação , Receptores de GABA-A/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Ligação Proteica , Células de Purkinje/metabolismo , Receptores de GABA-A/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...