Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 226: 107118, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122495

RESUMO

BACKGROUND: The application of machine learning algorithms for assessing the auditory brainstem response has gained interest over recent years with a considerable number of publications in the literature. In this systematic review, we explore how machine learning has been used to develop algorithms to assess auditory brainstem responses. A clear and comprehensive overview is provided to allow clinicians and researchers to explore the domain and the potential translation to clinical care. METHODS: The systematic review was performed based on PRISMA guidelines. A search was conducted of PubMed, IEEE-Xplore, and Scopus databases focusing on human studies that have used machine learning to assess auditory brainstem responses. The duration of the search was from January 1, 1990, to April 3, 2021. The Covidence systematic review platform (www.covidence.org) was used throughout the process. RESULTS: A total of 5812 studies were found through the database search and 451 duplicates were removed. The title and abstract screening process further reduced the article count to 89 and in the proceeding full-text screening, 34 articles met our full inclusion criteria. CONCLUSION: Three categories of applications were found, namely neurologic diagnosis, hearing threshold estimation, and other (does not relate to neurologic or hearing threshold estimation). Neural networks and support vector machines were the most commonly used machine learning algorithms in all three categories. Only one study had conducted a clinical trial to evaluate the algorithm after development. Challenges remain in the amount of data required to train machine learning models. Suggestions for future research avenues are mentioned with recommended reporting methods for researchers.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Tronco Encefálico , Bases de Dados Factuais , Potenciais Evocados Auditivos do Tronco Encefálico
2.
Comput Methods Programs Biomed ; 200: 105942, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515845

RESUMO

INTRODUCTION: Auditory brainstem responses (ABRs) offer a unique opportunity to assess the neural integrity of the peripheral auditory nervous system in individuals presenting with listening difficulties. ABRs are typically recorded and analyzed by an audiologist who manually measures the timing and quality of the waveforms. The interpretation of ABRs requires considerable experience and training, and inappropriate interpretation can lead to incorrect judgments about the integrity of the system. Machine learning (ML) techniques may be a suitable approach to automate ABR interpretation and reduce human error. OBJECTIVES: The main objective of this paper was to identify a suitable ML technique to automate the analysis of ABR responses recorded as a part of the electrophysiological testing in the Auditory Processing Disorder clinical test battery. METHODS: ABR responses recorded during routine clinical assessment from 136 children being evaluated for auditory processing difficulties were analyzed using several common ML algorithms: Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Gradient Boosting (GB), Extreme Gradient Boosting (Xgboost), and Neural Networks (NN). A variety of signal feature extraction techniques were used to extract features from the ABR waveforms as inputs to the ML algorithms. Statistical significance testing and confusion matrices were used to identify the most robust model capable of accurately identifying neurological abnormalities present in ABRs. RESULTS: Clinically significant features in the time-frequency representation of the signal were identified. The ML model trained using the Xgboost algorithm was identified as the most robust model with an accuracy of 92% compared to other models. CONCLUSION: The findings of the present study demonstrate that it is possible to develop accurate ML models to automate the process of analyzing ABR waveforms recorded at suprathreshold levels. There is currently no ML-based application to screen children with listening difficulties. Therefore, it is expected that this work will be translated into an evaluation tool that can be used by audiologists in the clinic. Furthermore, this work may aid future researchers in exploring ML paradigms to improve clinical test batteries used by audiologists in achieving accurate diagnoses.


Assuntos
Transtornos da Percepção Auditiva , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica , Algoritmos , Transtornos da Percepção Auditiva/diagnóstico , Criança , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...