Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(21): 13527-13543, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095648

RESUMO

The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...