Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(5): 3298-3313, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35271742

RESUMO

PURPOSE: A novel phantom-imaging platform, a set of software tools, for automated and high-precision imaging of the American College of Radiology (ACR) positron emission tomography (PET) phantom for PET/magnetic resonance (PET/MR) and PET/computed tomography (PET/CT) systems is proposed. METHODS: The key feature of this platform is the vector graphics design that facilitates the automated measurement of the knife-edge response function and hence image resolution, using composite volume of interest templates in a 0.5 mm resolution grid applied to all inserts of the phantom. Furthermore, the proposed platform enables the generation of an accurate µ $\mu$ -map for PET/MR systems with a robust alignment based on two-stage image registration using specifically designed PET templates. The proposed platform is based on the open-source NiftyPET software package used to generate multiple list-mode data bootstrap realizations and image reconstructions to determine the precision of the two-stage registration and any image-derived statistics. For all the analyses, iterative image reconstruction was employed with and without modeled shift-invariant point spread function and with varying iterations of the ordered subsets expectation maximization (OSEM) algorithm. The impact of the activity outside the field of view (FOV) was assessed using two acquisitions of 30 min each, with and without the activity outside the FOV. RESULTS: The utility of the platform has been demonstrated by providing a standard and an advanced phantom analysis including the estimation of spatial resolution using all cylindrical inserts. In the imaging planes close to the edge of the axial FOV, we observed deterioration in the quantitative accuracy, reduced resolution (FWHM increased by 1-2 mm), reduced contrast, and background uniformity due to the activity outside the FOV. Although it slows convergence, the PSF reconstruction had a positive impact on resolution and contrast recovery, but the degree of improvement depended on the regions. The uncertainty analysis based on bootstrap resampling of raw PET data indicated high precision of the two-stage registration. CONCLUSIONS: We demonstrated that phantom imaging using the proposed methodology with the metric of spatial resolution and multiple bootstrap realizations may be helpful in more accurate evaluation of PET systems as well as in facilitating fine tuning for optimal imaging parameters in PET/MR and PET/CT clinical research studies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Software
2.
Eur J Nucl Med Mol Imaging ; 42(1): 138-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25231248

RESUMO

PURPOSE: The in vivo binding parameters of the novel imidazopyridine TSPO ligand [(18)F]PBR102 were assessed and compared with those of [(18)F]PBR111 in a rodent model of neuroinflammation. The validity of the key assumptions of the simplified reference tissue model (SRTM) for estimation of binding potential (BP) was determined, with validation against a two-tissue compartment model (2TC). METHODS: Acute neuroinflammation was assessed 7 days after unilateral stereotaxic administration of (R,S)-α-amino-3-hydroxy-5-methyl-4-isoxazolopropionique (AMPA) in anaesthetized adult Wistar rats. Anaesthetized rats were implanted with a femoral arterial cannula then injected with a low mass of [(18)F]PBR102 or [(18)F]PBR111 and dynamic images were acquired over 60 min using an INVEON PET/CT camera. Another population of rats underwent the same PET protocol after pretreatment with a presaturating mass of the same unlabelled tracer (1 mg/kg) to assess the validity of the reference region for SRTM analysis. Arterial blood was sampled during imaging, allowing pharmacokinetic determination of radiotracer concentrations. Plasma activity concentration-time curves were corrected for unchanged tracer based on metabolic characterization experiments in a separate cohort of Wistar rats. The stability of neuroinflammation in both imaging cohorts was assessed by [(125)I] CLINDE TSPO quantitative autoradiography, OX42/GFAP immunohistochemistry, Fluoro-Jade C histology, and elemental mapping using microparticle-induced x-ray emission spectroscopy. The BP of each ligand were assessed in the two cohorts of lesioned animals using both SRTM and a 2TC with arterial parent compound concentration, coupled with the results from the presaturation cohort for comparison and validation of the SRTM. RESULTS: The BPs of [(18)F]PBR102 [(18)F]PBR111 were equivalent, with improved signal-to-noise ratio and sensitivity compared with [(11)C]PK11195. The presaturation study showed differences in the volume of distribution between the ipsilateral striatum and the striatum contralateral to the injury (0.7) indicating that an assumption of the SRTM was not met. The modelling indicated that the BPs were consistent for both ligands. Between the SRTM and 2TC model, the BPs were highly correlated, but there was a bias in BP. CONCLUSION: [(18)F]PBR102 and [(18)F]PBR111 have equivalent binding properties in vivo, displaying significantly greater BPs with lower signal-to-noise ratio than [(11)C]PK11195. While an assumption of the SRTM was not met, this modelling approach was validated against 2TC modelling for both ligands, facilitating future use in longitudinal PET imaging of neuroinflammation.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas de Transporte/metabolismo , Imidazóis/farmacocinética , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores de GABA-A/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Imidazóis/síntese química , Inflamação/diagnóstico por imagem , Inflamação/etiologia , Masculino , Tomografia por Emissão de Pósitrons , Ligação Proteica , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Wistar , Razão Sinal-Ruído , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
3.
Phys Med Biol ; 58(19): 6749-63, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24018840

RESUMO

Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([(11)C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons/instrumentação , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Imagens de Fantasmas , Espalhamento de Radiação , Contagem de Cintilação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...