Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34193524

RESUMO

Successfully combating the COVID-19 pandemic depends on mass vaccination with suitable vaccines to achieve herd immunity. Here, we describe COVI-VAC, the only live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine currently in clinical development. COVI-VAC was developed by recoding a segment of the viral spike protein with synonymous suboptimal codon pairs (codon-pair deoptimization), thereby introducing 283 silent (point) mutations. In addition, the furin cleavage site within the spike protein was deleted from the viral genome for added safety of the vaccine strain. Except for the furin cleavage site deletion, the COVI-VAC and parental SARS-CoV-2 amino acid sequences are identical, ensuring that all viral proteins can engage with the host immune system of vaccine recipients. COVI-VAC was temperature sensitive in vitro yet grew robustly (>107 plaque forming units/mL) at the permissive temperature. Tissue viral loads were consistently lower, lung pathology milder, and weight loss reduced in Syrian golden hamsters (Mesocricetus auratus) vaccinated intranasally with COVI-VAC compared to those inoculated with wild-type (WT) virus. COVI-VAC inoculation generated spike IgG antibody levels and plaque reduction neutralization titers similar to those in hamsters inoculated with WT virus. Upon challenge with WT virus, COVI-VAC vaccination reduced lung challenge viral titers, resulted in undetectable virus in the brain, and protected hamsters from almost all SARS-CoV-2-associated weight loss. Highly attenuated COVI-VAC is protective at a single intranasal dose in a relevant in vivo model. This, coupled with its large-scale manufacturing potential, supports its potential use in mass vaccination programs.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Animais , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Chlorocebus aethiops , Feminino , Humanos , Masculino , Mesocricetus , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas Atenuadas/imunologia , Células Vero
2.
Lancet Glob Health ; 9(8): e1172-e1175, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34118192

RESUMO

The Global Polio Eradication Initiative, launched in 1988 with anticipated completion by 2000, has yet to reach its ultimate goal. The recent surge of polio cases urgently calls for a reassessment of the programme's current strategy and a new design for the way forward. We propose that the sustainable protection of the world population against paralytic polio cannot be achieved simply by stopping the circulation of poliovirus but must also include maintaining high rates of population immunity indefinitely, which can be created and maintained by implementing global immunisation programmes with improved poliovirus vaccines that create comprehensive immunity without spawning new virulent viruses. The proposed new strategic goal of eradicating the disease rather than the virus would lead to a sustainable eradication of poliomyelitis while simultaneously promoting immunisation against other vaccine-preventable diseases.


Assuntos
Erradicação de Doenças , Saúde Global/estatística & dados numéricos , Poliomielite/prevenção & controle , Humanos , Programas de Imunização , Poliomielite/epidemiologia , Vacinas contra Poliovirus/administração & dosagem , Avaliação de Programas e Projetos de Saúde
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753491

RESUMO

Recoding viral genomes by introducing numerous synonymous but suboptimal codon pairs-called codon-pair deoptimization (CPD)-provides new types of live-attenuated vaccine candidates. The large number of nucleotide changes resulting from CPD should provide genetic stability to the attenuating phenotype, but this has not been rigorously tested. Human respiratory syncytial virus in which the G and F surface glycoprotein ORFs were CPD (called Min B) was temperature-sensitive and highly restricted in vitro. When subjected to selective pressure by serial passage at increasing temperatures, Min B substantially regained expression of F and replication fitness. Whole-genome deep sequencing showed many point mutations scattered across the genome, including one combination of six linked point mutations. However, their reintroduction into Min B provided minimal rescue. Further analysis revealed viral genomes bearing very large internal deletions (LD genomes) that accumulated after only a few passages. The deletions relocated the CPD F gene to the first or second promoter-proximal gene position. LD genomes amplified de novo in Min B-infected cells were encapsidated, expressed high levels of F, and complemented Min B replication in trans This study provides insight on a variation of the adaptability of a debilitated negative-strand RNA virus, namely the generation of defective minihelper viruses to overcome its restriction. This is in contrast to the common "defective interfering particles" that interfere with the replication of the virus from which they originated. To our knowledge, defective genomes that promote rather than inhibit replication have not been reported before in RNA viruses.


Assuntos
Genoma Viral/genética , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Replicação Viral/genética , Animais , Chlorocebus aethiops , Códon/genética , Fases de Leitura Aberta/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Deleção de Sequência , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Proteínas Virais de Fusão/genética
4.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666376

RESUMO

We subjected various open reading frames (ORFs) in the genome of respiratory syncytial virus (RSV) to codon pair optimization (CPO) by increasing the content of codon pairs that are overrepresented in the human genome without changing overall codon usage and amino acid sequences. CPO has the potential to increase the expression of the encoded protein(s). Four viruses were made: Max A (with CPO of NS1, NS2, N, P, M, and SH ORFs), Max B (with CPO of G and F), Max L (with CPO of L), and Max FLC (with CPO of all ORFs except M2-1 and M2-2). Because of the possibility of increased viral replication, each CPO virus was attenuated by the inclusion of a codon deletion mutation (Δ1313) and a missense mutation (I1314L) in the L polymerase. CPO had no effect on multicycle virus replication in vitro, temperature sensitivity, or specific infectivity. Max A and L, which in common had CPO of one or more ORFs of proteins of the polymerase complex, exhibited global increases in viral protein synthesis. Max B alone exhibited decreased protein synthesis, and it alone had reduced single-cycle virus replication in vitro All CPO RSVs exhibited marginal reductions in replication in mice and hamsters. Surprisingly, the CPO RSVs induced lower levels of serum RSV-neutralizing antibodies in hamsters. This reduced immunogenicity might reflect reduced viral replication and possibly also the decrease in CpG and UpA dinucleotides as immune stimulators. Overall, our study describes paradoxical effects of CPO of an RNA virus on viral replication and the adaptive humoral immune response.IMPORTANCE Using computer algorithms and large-scale DNA synthesis, one or more ORFs of a microbial pathogen can be recoded by different strategies that involve the introduction of up to thousands of nucleotide changes without affecting amino acid coding. This approach has been used mostly to generate deoptimized viruses used as vaccine candidates. However, the effects of the converse approach of generating optimized viruses are still largely unknown. Here, various ORFs in the genome of respiratory syncytial virus (RSV) were codon pair optimized (CPO) by increasing the content of codon pairs that are overrepresented in the human genome. CPO did not affect RSV replication in multicycle replication experiments in vitro. However, replication was marginally reduced in two rodents models. In hamsters, CPO RSVs induced lower levels of serum RSV-neutralizing antibodies. Thus, CPO of an RNA virus for a mammalian host has paradoxical effects on virus replication and the adaptive humoral immune response.


Assuntos
Uso do Códon , Genoma Viral/imunologia , Fases de Leitura Aberta/imunologia , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral , Células A549 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Cricetinae , Humanos , Mesocricetus , Camundongos , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Células Vero , Replicação Viral/genética , Replicação Viral/imunologia
5.
Virology ; 537: 237-245, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539771

RESUMO

The four serotypes of dengue virus (DENV) are the leading etiologic agent of disease caused by arthropod-borne viruses (arboviruses) in the world, with billions at risk of DENV infection spread by infected mosquitoes. DENV causes illness ranging from dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DENV proliferates well in two different host systems, an invertebrate mosquito vector and vertebrate primate host, which have a distinct difference in their preference of codon pairs (CP) for translation (different "codon pair bias"). Consequently, arboviruses must delicately balance the use of codon pairs between mammals and arthropods, which presents an Achilles' heel that we have exploited by specifically shifting the codon pair preference in the E and NS3 ORFs away from mammals while keeping the CPB favorable for mosquito ORFs. Here we report that recoding of the ORFs has led to variants that were over-attenuated in rhesus macaques although induction of protective antibodies in animals vaccinated with the smallest recoded ORF (E) was observed. The flexibility of our synthetic vaccine design (by decreasing the number of unfavorable CPs in the E ORF), allowed us to construct two new vaccine candidates (EhminA and EhminB) with intermediate attenuation in cell culture and neonatal mice, a result demonstrating proof of concept. New DENV vaccine candidates are being developed based on selective attenuation by dramatic recoding, with flexibility in balancing the attenuation and immunogenicity by marrying rational design and empirical modification.


Assuntos
Uso do Códon , Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Vírus da Dengue/genética , Dengue/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/isolamento & purificação , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Macaca mulatta , Camundongos , RNA Helicases/genética , Serina Endopeptidases/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Virulência
6.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967466

RESUMO

The Flavivirus genus of the Flaviviridae family encompasses numerous enveloped plus-strand RNA viruses. Dengue virus (DENV), a flavivirus, is the leading cause of serious arthropod-borne disease globally. The genomes of DENV, like the genomes of yellow fever virus (YFV), West Nile fever virus (WNV), or Zika virus (ZIKV), control their translation by a 5'-terminal capping group. Three other genera of Flaviviridae are remarkable because their viruses use internal ribosomal entry sites (IRESs) to control translation, and they are not arthropod transmitted. In 2006, E. Harris' group published work suggesting that DENV RNA does not stringently need a cap for translation. They proposed that instead DENV translation is controlled by an interplay between 5' and 3' termini. Here we present evidence that the DENV or ZIKV 5' untranslated regions (5'-UTRs) alone have IRES competence. This conclusion is based, first, on the observation that uncapped monocistronic mRNAs 5' terminated with the DENV or ZIKV 5'-UTRs can efficiently direct translation of a reporter gene in BHK and C6/36 cells and second, that either 5'-UTR placed between two reporter genes can efficiently induce expression of the downstream gene in BHK cells but not in C6/36 cells. These experiments followed observations that uncapped DENV/ZIKV genomic transcripts, 5' terminated with pppAN… or GpppAN…, can initiate infections of mammalian (BHK) or mosquito (C6/36) cells. IRES competence of the 5'-UTRs of DENV/ZIKV raises many open questions regarding the biology and control, as well as the evolution, of insect-borne flaviviruses.IMPORTANCE Members of the genus Flavivirus of Flaviviridae are important human pathogens of great concern because they cause serious diseases, sometimes death, in human populations living in tropical, subtropical (dengue virus [DENV], Zika virus [ZIKV], and yellow fever virus), or moderate climates (West Nile virus). Flaviviruses are known to control their translation by a cap-dependent mechanism. We have observed, however, that the uncapped genomes of DENV or ZIKV can initiate infection of mammalian and insect cells. We provide evidence that the short 5' untranslated region (5'-UTR) of DENV or ZIKV genomes can fulfill the function of an internal ribosomal entry site (IRES). This strategy frees these organisms from the cap-dependent mechanism of gene expression at an as yet unknown stage of proliferation. The data raise new questions about the biology and evolution of flaviviruses, possibly leading to new controls of flavivirus disease.


Assuntos
Regiões 5' não Traduzidas , Vírus da Dengue/genética , Sítios Internos de Entrada Ribossomal , Zika virus/genética , Animais , Linhagem Celular , Genes Reporter , Biossíntese de Proteínas
7.
PLoS One ; 13(9): e0198303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192757

RESUMO

Dengue virus (DENV), an arthropod-borne ("arbovirus") virus, causes a range of human maladies ranging from self-limiting dengue fever to the life-threatening dengue shock syndrome and proliferates well in two different taxa of the Animal Kingdom, mosquitoes and primates. Mosquitoes and primates show taxonomic group-specific intolerance to certain codon pairs when expressing their genes by translation. This is called "codon pair bias". By necessity, dengue viruses evolved to delicately balance this fundamental difference in their open reading frames (ORFs). We have undone the evolutionarily conserved genomic balance in the DENV2 ORF sequence and specifically shifted the encoding preference away from primates. However, this recoding of DENV2 raised concerns of 'gain-of-function,' namely whether recoding could inadvertently increase fitness for replication in the arthropod vector. Using mosquito cell lines and two strains of Aedes aegypti we did not observe any increase in fitness in DENV2 variants codon pair deoptimized for humans. This ability to disrupt and control DENV2's host preference has great promise towards developing the next generation of synthetic vaccines not only for DENV but for other emerging arboviral pathogens such as chikungunya virus and Zika virus.


Assuntos
Vírus da Dengue/genética , Genoma Viral , Replicação Viral/genética , Aedes/virologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células Vero
8.
Proc Natl Acad Sci U S A ; 114(41): E8731-E8740, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973853

RESUMO

Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.


Assuntos
Genoma Viral , Poliomielite/virologia , Poliovirus/genética , Poliovirus/patogenicidade , Vírion/genética , Montagem de Vírus , Replicação Viral , Células A549 , Células HeLa , Humanos , Fenótipo , Poliomielite/genética , RNA Viral
9.
Proc Natl Acad Sci U S A ; 114(3): E386-E395, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049853

RESUMO

Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates.


Assuntos
Genoma Viral/genética , Vírus de RNA/genética , Vacinas Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops/genética , Códon/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Fases de Leitura Aberta/genética , Vírus Sincicial Respiratório Humano , Vacinas Atenuadas/genética , Vacinas Sintéticas/genética , Células Vero , Proteínas Virais/genética , Replicação Viral/genética
10.
PLoS Pathog ; 12(3): e1005483, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27032093

RESUMO

The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.


Assuntos
Poliomielite/imunologia , Vacina Antipólio de Vírus Inativado/imunologia , Poliovirus/imunologia , Animais , Temperatura Baixa , Temperatura Alta , Camundongos Transgênicos , Mutação/genética , Fenótipo , Poliovirus/genética , Vacina Antipólio Oral/imunologia , RNA Viral/imunologia , Ratos , Vacinação/métodos
11.
J Virol ; 90(14): 6174-6186, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076638

RESUMO

UNLABELLED: The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2C(ATPase) In particular, residue N252 of poliovirus 2C(ATPase) interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2C(ATPase) has important roles both in RNA replication and encapsidation. In this study, we searched for additional sites in 2C(ATPase), near N252, that are required for encapsidation. Accordingly, segments adjacent to N252 were analyzed by combining triple and single alanine mutations to identify residues required for function. Two triple alanine mutants exhibited defects in RNA replication. The remaining two mutations, located in secondary structures in a predicted three-dimensional model of 2C(ATPase), caused lethal growth phenotypes. Most single alanine mutants, derived from the lethal variants, were either quasi-infectious and yielded variants with wild-type (wt) or temperature-sensitive (ts) growth phenotypes or had a lethal growth phenotype due to defective RNA replication. The K259A mutation, mapping to an α helix in the predicted structure of 2C(ATPase), resulted in a cold-sensitive virus. In vivo protein synthesis and virus production were strikingly delayed at 33°C relative to the wt, suggesting a defect in uncoating. Studies with a reporter virus indicated that this mutant is also defective in encapsidation at 33°C. Cell imaging confirmed a much-reduced production of K259A mature virus at 33°C relative to the wt. In conclusion, we have for the first time linked a cold-sensitive encapsidation defect in 2C(ATPase) (K259A) to a subsequent delay in uncoating of the virus particle at 33°C during the next cycle of infection. IMPORTANCE: Enterovirus morphogenesis, which involves the encapsidation of newly made virion RNA, is a process still poorly understood. Elucidation of this process is important for future drug development for a large variety of diseases caused by these agents. We have previously shown that the specificity of encapsidation of poliovirus and of C-cluster coxsackieviruses, which are prototypes of enteroviruses, is dependent on an interaction of capsid proteins with the multifunctional nonstructural protein 2C(ATPase) In this study, we have searched for residues in poliovirus 2C(ATPase), near a presumed capsid-interacting site, important for encapsidation. An unusual cold-sensitive mutant of 2C(ATPase) possessed a defect in encapsidation at 37°C and subsequently in uncoating during the next cycle of infection at 33°C. These studies not only reveal a new site in 2C(ATPase) that is involved in encapsidation but also identify a link between encapsidation and uncoating.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação/genética , Poliomielite/patologia , Poliovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Desenvelopamento do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutagênese Sítio-Dirigida , Fenótipo , Poliomielite/genética , Poliomielite/virologia , Poliovirus/enzimologia , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Montagem de Vírus , Replicação Viral
13.
Vaccine ; 34(4): 563-570, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26655630

RESUMO

Codon-pair bias de-optimization (CPBD) of viruses involves re-writing viral genes using statistically underrepresented codon pairs, without any changes to the amino acid sequence or codon usage. Previously, this technology has been used to attenuate the influenza A/Puerto Rico/8/34 (H1N1) virus. The de-optimized virus was immunogenic and protected inbred mice from challenge. In order to assess whether CPBD could be used to produce a live vaccine against a clinically relevant influenza virus, we generated an influenza A/California/07/2009 pandemic H1N1 (2009 pH1N1) virus with de-optimized HA and NA gene segments (2009 pH1N1-(HA+NA)(Min)), and evaluated viral replication and protein expression in MDCK cells, and attenuation, immunogenicity, and efficacy in outbred ferrets. The 2009 pH1N1-(HA+NA)(Min) virus grew to a similar titer as the 2009 pH1N1 wild type (wt) virus in MDCK cells (∼10(6)TCID50/ml), despite reduced HA and NA protein expression on western blot. In ferrets, intranasal inoculation of 2009 pH1N1-(HA+NA)(Min) virus at doses ranging from 10(3) to 10(5) TCID50 led to seroconversion in all animals and protection from challenge with the 2009 pH1N1 wt virus 28 days later. The 2009 pH1N1-(HA+NA)(Min) virus did not cause clinical illness in ferrets, but replicated to a similar titer as the wt virus in the upper and lower respiratory tract, suggesting that de-optimization of additional gene segments may be warranted for improved attenuation. Taken together, our data demonstrate the potential of using CPBD technology for the development of a live influenza virus vaccine if the level of attenuation is optimized.


Assuntos
Códon , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/imunologia , Animais , Anticorpos Antivirais/sangue , Cães , Furões , Engenharia Genética , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H1N1/fisiologia , Células Madin Darby de Rim Canino , Masculino , Infecções por Orthomyxoviridae/prevenção & controle , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Vacinas Atenuadas/imunologia , Replicação Viral
14.
Vaccine ; 33(48): 6611-6, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26529068

RESUMO

BACKGROUND: As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. METHODS: We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. RESULTS: PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. CONCLUSIONS: Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential for higher yields could contribute to increased affordability of a next generation of IPV vaccines needed for achieving and maintaining poliovirus eradication.


Assuntos
Vacina Antipólio de Vírus Inativado , Poliovirus/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Anticorpos Antivirais/sangue , Técnicas de Cultura de Células , Linhagem Celular , Chlorocebus aethiops , Meios de Cultura Livres de Soro/química , Ensaio de Imunoadsorção Enzimática , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral , Coelhos , Vacinas Atenuadas , Células Vero , Carga Viral
16.
J Gen Virol ; 96(9): 2614-2622, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018960

RESUMO

Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.


Assuntos
Poliomielite/prevenção & controle , Vacina Antipólio Oral/imunologia , Poliovirus/imunologia , Sequência de Aminoácidos , Animais , História do Século XX , Humanos , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Poliomielite/história , Poliomielite/imunologia , Poliomielite/virologia , Poliovirus/genética , Poliovirus/crescimento & desenvolvimento , Vacina Antipólio Oral/química , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/história , Alinhamento de Sequência , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/história , Vacinas Atenuadas/imunologia
17.
mBio ; 6(2)2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25827413

RESUMO

UNLABELLED: Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5'-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1(sdmax) and L1(min), respectively. Analysis revealed that recombinant VSV containing the L1(min) sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1(sdmax) virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses. IMPORTANCE: Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus in the order Mononegavirales. A wide range of human pathogens belong to this family. Using a unique computer algorithm and large-scale genome synthesis, we attempted to develop a live attenuated vaccine strain for VSV, which could be used as an antigen delivery platform for humans. Recombinant VSVs with distinct codon pair biases were rationally designed, constructed, and analyzed in both cell culture and an animal model. One such recombinant virus, L1(sdmax), contained extra overrepresented codon pairs in its L gene open reading frame (ORF) and showed promise as an effective vaccine candidate because of a favorable balance between virulence and immunogenicity. Our study not only contributes to the understanding of the underlying mechanism of codon pair bias but also may facilitate the development of live attenuated vaccines for other viruses in the order Mononegavirales.


Assuntos
Engenharia de Proteínas , RNA Polimerase Dependente de RNA/metabolismo , Mutação Silenciosa , Vesiculovirus/imunologia , Vesiculovirus/fisiologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Animais , Desenho Assistido por Computador , Masculino , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vesiculovirus/genética , Vesiculovirus/crescimento & desenvolvimento , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação , Virulência
18.
Proc Natl Acad Sci U S A ; 112(15): 4749-54, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825721

RESUMO

The protein synthesis machineries of two distinct phyla of the Animal kingdom, insects of Arthropoda and mammals of Chordata, have different preferences for how to best encode proteins. Nevertheless, arboviruses (arthropod-borne viruses) are capable of infecting both mammals and insects just like arboviruses that use insect vectors to infect plants. These organisms have evolved carefully balanced genomes that can efficiently use the translational machineries of different phyla, even if the phyla belong to different kingdoms. Using dengue virus as an example, we have undone the genome encoding balance and specifically shifted the encoding preference away from mammals. These mammalian-attenuated viruses grow to high titers in insect cells but low titers in mammalian cells, have dramatically increased LD50s in newborn mice, and induce high levels of protective antibodies. Recoded arboviruses with a bias toward phylum-specific expression could form the basis of a new generation of live attenuated vaccine candidates.


Assuntos
Arbovírus/fisiologia , Genoma Viral , Insetos Vetores/virologia , Mamíferos/virologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/imunologia , Arbovírus/genética , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Códon , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Insetos Vetores/citologia , Insetos Vetores/genética , Mamíferos/genética , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , RNA Helicases/genética , RNA Helicases/imunologia , RNA Helicases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Vacinas Atenuadas/imunologia , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Viroses/imunologia , Viroses/virologia
19.
Cell ; 160(4): 619-630, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679758

RESUMO

A central paradigm within virology is that each viral particle largely behaves as an independent infectious unit. Here, we demonstrate that clusters of enteroviral particles are packaged within phosphatidylserine (PS) lipid-enriched vesicles that are non-lytically released from cells and provide greater infection efficiency than free single viral particles. We show that vesicular PS lipids are co-factors to the relevant enterovirus receptors in mediating subsequent infectivity and transmission, in particular to primary human macrophages. We demonstrate that clustered packaging of viral particles within vesicles enables multiple viral RNA genomes to be collectively transferred into single cells. This study reveals a novel mode of viral transmission, where enteroviral genomes are transmitted from cell-to-cell en bloc in membrane-bound PS vesicles instead of as single independent genomes. This has implications for facilitating genetic cooperativity among viral quasispecies as well as enhancing viral replication.


Assuntos
Vesículas Citoplasmáticas/virologia , Infecções por Enterovirus/transmissão , Enterovirus/fisiologia , Macrófagos/virologia , Vesículas Citoplasmáticas/química , Humanos , Macrófagos/citologia , Fosfatidilserinas , Poliovirus/fisiologia , RNA Viral/metabolismo , Rhinovirus/fisiologia , Replicação Viral
20.
Virus Res ; 206: 12-26, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25592245

RESUMO

Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.


Assuntos
Picornaviridae/fisiologia , RNA Viral/metabolismo , Iniciação da Transcrição Genética , Replicação Viral , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de RNA , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...