Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431947

RESUMO

High-quality perovskite film with large grains and therefore reduced grain boundaries plays a significant role in improving the power conversion efficiency (PCE) and ensuring good long-term stability of the perovskite solar cells. In this work, we found that adding camphorsulfonic acid (CSA), a Lewis base, to the perovskite solution results in the crystallization of larger perovskite grains. By varying the concentration of CSA, we found that the optimal concentration of the additive is 1 mg/mL, which leads to an 20% increase in PCE of the cells compared to the reference CSA-free cell. Interestingly, we observed that the PCE of cells with an excess of CSA was initially poor, but may increase significantly over time, possibly due to CSA migration to the hole-transporting layer, leading to an improvement in its conductivity.

2.
Sci Adv ; 8(40): eabq7533, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197989

RESUMO

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...