Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(11): e2307077, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37793118

RESUMO

3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO3 , CaZrO3 , and SrZrO3 ) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO3 , CaZrO3 , and SrZrO3 . From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.

2.
Chem Commun (Camb) ; 59(21): 3095-3098, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36805077

RESUMO

Microscale functional materials permit advanced applications in optics and photonics. This work presents the additive manufacturing of three-dimensional structured phosphors emitting red, green, blue, and white. The development is a step forward to realizing additive colour synthesis within complex architectures of relevance in integrated optics or light-emitting sources.

3.
ACS Appl Mater Interfaces ; 14(28): 31767-31781, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786845

RESUMO

Photocatalytic H2 generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta2O5/SrZrO3 heterostructure with Ru and Cu (RuO2/CuxO/Ta2O5/SrZrO3) using solid-state chemistry methods to achieve a high H2 production of 5164 µmol g-1 h-1 under simulated solar light, 39 times higher than that produced using SrZrO3. The heterostructure performance is compared with other Ta2O5/SrZrO3 heterostructure compositions loaded with RuO2, CuxO, or Pt. CuxO is used to showcase the usage of less costly cocatalysts to produce H2. The photocatalytic activity toward H2 by the RuO2/CuxO/Ta2O5/SrZrO3 heterostructure remains the highest, followed by RuO2/Ta2O5/SrZrO3 > CuxO/Ta2O5/SrZrO3 > Pt/Ta2O5/SrZrO3 > Ta2O5/SrZrO3 > SrZrO3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO2 or CuxO) and are even higher for the binary catalyst (RuO2/CuxO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta2O5/SrZrO3, improving the solar to hydrogen conversion efficiency. The results represent a valuable contribution to the design of SrZrO3-based heterostructures for photocatalytic H2 production by solar water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...