Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep Med ; 54: 101-112, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530254

RESUMO

INTRODUCTION: Clinical research and studies using animal models have revealed a complex and relatively under-explored interaction between prenatal alcohol exposure (PAE) and alterations in sleep-wake behaviors. OBJECTIVES: To utilize a structured naturalistic observation-based methodology, consisting of descriptive elements, to provide insight into possible links between altered sleep and disruptive daytime presentations in children and adolescents with fetal alcohol spectrum disorder (FASD). To apply a similar structured behavioral observation protocol in a PAE animal model to compare outcomes from the experimental and clinical studies utilizing naturalistic observational methodology. METHODS: Forty pediatric patients with FASD (1.8-17.5 yrs, median age 9.4 yrs) and chronic sleep problems were assessed. In the PAE animal model, male offspring from PAE, Pair-Fed (PF), and ad libitum-fed Control (C) groups (n = 8/group) were assessed in the juvenile/preadolescent (23-25 days of age) and adolescent/pubertal (35-36 days of age) periods. RESULTS: In the clinical setting, we found that 95% of children with FASD showed disruptive or externalizing behaviors, 73% showed internalizing behaviors, 93% had circadian rhythm sleep disorders, all had chronic insomnia, and 85% had restless sleep, often with tossing/turning/kicking movements indicative of non-restorative sleep with hypermotor events. In the daytime, individuals showed excessive daytime sleepiness as well as hyperactive/hyperkinetic behaviors, an urge-to-move, and involuntary movements suggestive of hyperarousability. Alterations in sleep/wake behaviors in the PAE animal model paralleled the clinical data in many aspects, demonstrating greater sleep latencies, less total time asleep, more total time awake and longer awake bouts, more position changes, more time in transition, and longer transition bouts in PAE compared to PF and/or control animals. CONCLUSIONS: Thus, our findings provide support for the power and validity of naturalistic observational paradigms in revealing dysregulated sleep-wake behaviors and their association and/or exacerbating relationship with day and nighttime behavioral problems, such as disruptive behaviors, externalizing and internalizing disorders, and daytime sleepiness.


Assuntos
Modelos Animais de Doenças , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , Transtornos do Sono-Vigília/fisiopatologia , Animais , Criança , Feminino , Humanos , Masculino , Gravidez , Ratos , Estresse Psicológico/psicologia , Gravação em Vídeo
2.
Mol Cell Endocrinol ; 477: 48-56, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883690

RESUMO

Overexpression of the X-linked inhibitor of apoptosis (XIAP) prevents islet allograft rejection. We constructed an adeno-associated virus expressing XIAP driven by the rat insulin promoter (dsAAV8-RIP-XIAP) for long-term beta-cell gene expression in vivo. Pancreatic delivery of dsAAV8-RIP-XIAP prevented autoimmune diabetes in 70% of non-obese diabetic (NOD) mice, associated with decreased insulitis. Islets from Balb/c mice transduced with dsAAV8-RIP-XIAP were protected following transplantation into streptozotocin (STZ)-diabetic Bl/6 recipients, associated with decreased graft infiltration. Interestingly, dsAAV8-RIP-XIAP transduction induced expression of lactate dehydrogenase (LDHA) and monocarboxylate transporter 1 (MCT1), two genes normally suppressed in beta cells and involved in production and release of lactate, a metabolite known to suppress local immune responses. Transduction of Balb/c islets with AAV8-RIP-LDHA-MCT1 tended to prolong allograft survival following transplant into STZ-diabetic Bl/6 recipients. These findings suggest that XIAP has therapeutic potential in autoimmune diabetes and raise the possibility that local lactate production may play a role in XIAP-mediated immunomodulation.


Assuntos
Aloenxertos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Rejeição de Enxerto/prevenção & controle , Imunomodulação , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Diabetes Mellitus Tipo 1/patologia , Glucose/farmacologia , Rejeição de Enxerto/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Injeções , Insulina/genética , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Camundongos , Camundongos Endogâmicos NOD , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ratos , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...