Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 279(4): R1419-29, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11004012

RESUMO

This study tested the hypothesis that protein kinase C (PKC) has dual regulation on norepinephrine (NE)-mediated inositol 1,4, 5-trisphosphate [Ins (1,4,5)P(3)] pathway and vasoconstriction in cerebral arteries from near-term fetal ( approximately 140 gestational days) and adult sheep. Basal PKC activity values (%membrane bound) in fetal and adult cerebral arteries were 38 +/- 4% and 32 +/- 4%, respectively. In vessels of both age groups, the PKC isoforms alpha, beta(I), beta(II), and delta were relatively abundant. In contrast, compared with the adult, cerebral arteries of the fetus had low levels of PKC-epsilon. In response to 10(-4) M phorbol 12,13-dibutyrate (PDBu; PKC agonist), PKC activity in both fetal and adult cerebral arteries increased 40-50%. After NE stimulation, PKC activation with PDBu exerted negative feedback on Ins(1,4,5)P(3) and intracellular Ca(2+) concentration ([Ca(2+)](i)) in arteries of both age groups. In turn, PKC inhibition with staurosporine resulted in augmented NE-induced Ins(1,4,5)P(3) and [Ca(2+)](i) responses in adult, but not fetal, cerebral arteries. In adult tissues, PKC stimulation by PDBu increased vascular tone, but not [Ca(2+)](i). In contrast, in the fetal artery, PKC stimulation was associated with an increase in both tone and [Ca(2+)](i). In the presence of zero extracellular [Ca(2+)], these PDBu-induced responses were absent in the fetal vessel, whereas they remained unchanged in the adult. We conclude that, although basal PKC activity was similar in fetal and adult cerebral arteries, PKC's role in NE-mediated pharmacomechanical coupling differed significantly in the two age groups. In both fetal and adult cerebral arteries, PKC modulation of NE-induced signal transduction responses would appear to play a significant role in the regulation of vascular tone. The mechanisms differ in the two age groups, however, and this probably relates, in part, to the relative lack of PKC-epsilon in fetal vessels.


Assuntos
Artérias Cerebrais/enzimologia , Inositol 1,4,5-Trifosfato/metabolismo , Norepinefrina/farmacologia , Proteína Quinase C/metabolismo , Animais , Membrana Celular/enzimologia , Artérias Cerebrais/embriologia , Artérias Cerebrais/fisiologia , Inibidores Enzimáticos/farmacologia , Retroalimentação , Feto , Indóis/farmacologia , Isoenzimas/metabolismo , Cinética , Lactamas/farmacologia , Naftalenos/farmacologia , Dibutirato de 12,13-Forbol/farmacologia , Proteína Quinase C beta , Proteína Quinase C-alfa , Proteína Quinase C-delta , Ovinos , Transdução de Sinais/fisiologia , Estaurosporina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...