Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238865

RESUMO

Eosinophils are potent sources of inflammatory and toxic mediators, yet they reside in large numbers in the healthy intestine without causing tissue damage. We show here that intestinal eosinophils were specifically adapted to their environment and underwent substantial transcriptomic changes. Intestinal eosinophils upregulated genes relating to the immune response, cell-cell communication, extracellular matrix remodeling, and the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with broad functions in intestinal homeostasis. Eosinophils from AHR-deficient mice failed to fully express the intestinal gene expression program, including extracellular matrix organization and cell junction pathways. AHR-deficient eosinophils were functionally impaired in the adhesion to and degradation of extracellular matrix, were more prone to degranulation, and had an extended life span. Lack of AHR in eosinophils had wider effects on the intestinal immune system, affecting the T cell compartment in nave and helminth-infected mice. Our study demonstrates that the response to environmental triggers via AHR partially shapes tissue adaptation of eosinophils in the small intestine.


Assuntos
Eosinófilos , Receptores de Hidrocarboneto Arílico , Animais , Eosinófilos/metabolismo , Homeostase , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Cell Cycle ; 21(14): 1439-1455, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35349392

RESUMO

Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).


Assuntos
Leucemia Mieloide Aguda , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Linhagem Celular Tumoral , Família de Proteínas EGF/farmacologia , Família de Proteínas EGF/uso terapêutico , Transição Epitelial-Mesenquimal , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Estrogênio , Sulfonamidas/farmacologia
3.
Diabetes ; 71(4): 653-668, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044456

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of ß-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and ß-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in ß-cells, we generated PTPN2-deficient human stem cell-derived ß-like and EndoC-ßH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in ß-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in ß-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced ß-cell death. Our results postulate PTPN2 as a key protective factor in ß-cells during inflammation and ER stress in autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Animais , Apoptose/genética , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
4.
Cell Death Differ ; 28(9): 2589-2600, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33785871

RESUMO

High levels of the anti-apoptotic BCL-2 family member MCL-1 are frequently found in breast cancer and, appropriately, BH3-mimetic drugs that specifically target MCL-1's function in apoptosis are in development as anti-cancer therapy. MCL-1 also has reported non-canonical roles that may be relevant in its tumour-promoting effect. Here we investigate the role of MCL-1 in clinically relevant breast cancer models and address whether the canonical role of MCL-1 in apoptosis, which can be targeted using BH3-mimetic drugs, is the major function for MCL-1 in breast cancer. We show that MCL-1 is essential in established tumours with genetic deletion inducing tumour regression and inhibition with the MCL-1-specific BH3-mimetic drug S63845 significantly impeding tumour growth. Importantly, we found that the anti-tumour functions achieved by MCL-1 deletion or inhibition were completely dependent on pro-apoptotic BAX/BAK. Interestingly, we find that MCL-1 is also critical for stem cell activity in human breast cancer cells and high MCL1 expression correlates with stemness markers in tumours. This strongly supports the idea that the key function of MCL-1 in breast cancer is through its anti-apoptotic function. This has important implications for the future use of MCL-1-specific BH3-mimetic drugs in breast cancer treatment.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Feminino , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...