Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 74(10): 3475-85, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1744278

RESUMO

Thirty Holstein cows were used in a 12-wk trial to study the effects of salmon meal and urea on lactational performance. Two experimental diets, one containing 5.6% salmon meal and the other 5.2% salmon meal plus .42% urea, were compared with a soybean meal control diet. Salmon meal and urea replaced a portion of the soybean meal. Dietary undegraded intake protein levels (expressed as percentage of CP) were 28.8, 35.6, and 32.4% for soybean meal, salmon meal, and salmon meal plus urea. Total mixed diets (average 17.3% CP, 17.6% ADF) consisting of 60% concentrate mixture and 40% bromegrass silage (DM basis) were fed twice daily. Total DMI was lower with salmon meal compared with soybean meal (20.2 versus 22.2 kg/d); salmon meal plus urea (21.2 kg/d) was intermediate. Actual milk production was similar for all diets (average 41.1 kg/d). Percentage milk fat and 4% FCM yield were lower with salmon meal (2.56%, 31.6 kg/d) and salmon meal plus urea (2.50%, 31.4 kg/d) than with soybean meal (3.03%, 35.9 kg/d). Gross efficiency (weight FCM/weight DMI) was higher for soybean meal than for salmon meal and salmon meal plus urea. Acetate: propionate tended to be higher with the soybean meal diet. The use of a high oil fish meal to provide a source of rumen undegraded intake protein, alone or in combination with urea, resulted in a decrease in milk fat percentage and yield without any beneficial effects on milk production or lactational efficiency.


Assuntos
Ração Animal , Bovinos/fisiologia , Produtos Pesqueiros , Lactação , Ureia/administração & dosagem , Amônia/análise , Animais , Nitrogênio da Ureia Sanguínea , Peso Corporal , Ingestão de Alimentos , Ácidos Graxos/análise , Ácidos Graxos Voláteis/análise , Feminino , Lipídeos/análise , Leite/análise , Leite/metabolismo , Rúmen/química , Salmão
2.
J Dairy Sci ; 71(12): 3310-22, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3235733

RESUMO

Four Holstein cows fitted with ruminal, duodenal, and ileal cannulae were used in a 4 x 4 Latin square design to measure ruminal protein degradation and small intestinal digestion of diets containing untreated soybean meal or soybean meal treated with heat and either water, xylose, or calcium lignosulfonate. Diets consisting of 40% corn silage, 10% alfalfa cubes, and 50% grain mix, and averaging 16.8% crude protein (DM basis) were fed four times daily. Approximately 50% of the total dietary protein was supplied by the respective soybean meal source. Ruminal protein degradation was 70.6, 69.6, 55.8, and 53.7% for diets containing untreated soybean meal, water-soybean meal, xylose-soybean meal, and calcium lignosulfonate-soybean meal, respectively. Duodenal non-NH3 N flow (g/d) and absorption of non-NH3 N (g/d) in the small intestine were generally not affected by treatment. Duodenal bacterial N flow (g/d) was lower with xylose-soybean meal and lignosulfonate-soybean meal than with untreated soybean meal. Treatment of soybean meal with xylose or calcium lignosulfonate was successful in decreasing ruminal protein degradation. However, it may be necessary to include a source of readily fermentable N in diets that contain protected proteins in order to supply adequate NH3 N for microbial protein synthesis.


Assuntos
Ração Animal , Bovinos/metabolismo , Proteínas Alimentares/metabolismo , Glycine max , Intestino Delgado/metabolismo , Lignina/análogos & derivados , Rúmen/metabolismo , Animais , Feminino , Lignina/farmacologia
3.
J Anim Sci ; 66(11): 2937-47, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-3225247

RESUMO

Two separate studies were conducted using a continuous culture fermenter system to determine effects of supplementing D,L-methionine and various methionine derivatives on degradation of methionine by ruminal bacteria. A basal diet containing 20% alfalfa hay, 20% corn silage and 60% grain mix (DM basis) was provided at a rate of 75 g DM/d per fermenter and served as an unsupplemented control in both experiments. In Exp. 1, methionine sources included D,L-methionine, D,L-methionine hydantoic acid, D,L-methionine hydantoin, N-acetyl-D,L-methionine, methylthio-isobutyric acid, methylthio-propionic acid and D,L-methionine sulfoxide. These sources were added directly to fermenters twice daily and supplied an equivalent of 98 mg/d D,L-methionine (.13% of diet DM) and 21 mg/d S. Effluent methionine flow from fermenters was higher (P less than .05) with diets supplemented with D,L-methionine hydantoic acid (245 mg/d), D,L-methionine hydantoin (245 mg/d) and N-acetyl-D,L-methionine (270 mg/d) than with control (211 mg/d) or D,L-methionine (211 mg/d) treatments, indicating a lower ruminal bacterial degradation of these methionine derivatives. There were no major effects on bacterial fermentation due to methionine supplementation or source. In Exp. 2, methionine sources included D,L-methionine, methionine hydroxy analog and N-hydroxymethyl-D,L-methionine; these were mixed with the basal diet to provide an equivalent of 250 mg/d D,L-methionine (.33% of diet DM). Sodium sulfate was added to the control diet to attain equal S (54 mg/d) levels across treatments. Flow of methionine was not affected (P greater than .05) by methionine supplementation, indicating extensive degradation of all three methionine sources by ruminal bacteria.


Assuntos
Metionina/análogos & derivados , Metionina/metabolismo , Rúmen/microbiologia , Animais , Órgãos Artificiais/veterinária , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...